3.2 Structure d'anneau

3.2.1 Définition d'anneau

On appelle anneau, un ensemble A muni de 2 lois :

- 1. Une première loi \star faisant de (A, \star) un groupe commutatif
- 2. Une seconde loi \top , interne, distributive à gauche et à droite par rapport à la loi \star , c'est à dire :

$$(\forall x \in A) \, (\forall y \in A) \, (\forall z \in A) \, (x \top \, (y \star z) = (x \top y) \star (x \top z))$$

et

$$(\forall x \in A) (\forall y \in A) (\forall z \in A) ((x \star y) \top z = (x \top z) \star (y \top z))$$

On dit alors que (A, \star, \top) est un anneau

- 1. Si la loi \top est commutative, l'anneau (A,\star,\top) est dit commutatif
- 2. Si la loi \top admet un élément neutre, l'anneau (A,\star,\top) est dit unitaire ; le neutre est noté 1
- 3. Si, pour $a \in A$ où (A, \star, \top) est un anneau unitaire, il existe $a' \in A$ tel que aa' = 1, l'élément a est dit inversible

Remarque 8:

Pour simplifier, nous noterons additivement + la première loi \star et multiplicativement \times la seconde loi \top , de telle sorte que l'anneau (A, \star, \top) devient $(A, +, \times)$

Exemple 10:

- 1. $(\mathbb{Z}, \star, \top)$ est un anneau commutatif et unitaire; les seuls éléments inversibles de $(\mathbb{Z}, \star, \top)$ sont 1 et -1
- 2. Les ensembles de polynômes $(\mathbb{R}[X], +, \times)$ et $(\mathbb{C}[X], +, \times)$ sont des anneaux unitaires
- 3. $\mathbb{R}^{\mathbb{R}}$ est l'ensemble des fonctions numériques réelles. On y définit :

L'addition
$$(f+g)(x) = f(x) + g(x)$$

La multiplication
$$(f \times g)(x) = f(x) \times g(x)$$

Muni de ces opérations, $(\mathbb{R}^{\mathbb{R}}, +, \times)$ est un anneau commutatif et unitaire

4. Et si nous considérons \circ l'opérateur de composition des applications, alors $(\mathbb{R}^{\mathbb{R}}, +, \circ)$ est un anneau unitaire non commutatif

3.2.2 Règles de calcul

Soit $(A, +, \times)$ un anneau. Alors, pour tout $a \in A$, $b \in A$ et $c \in A$:

- **1.** a(b-c) = ab ac
- **3.** $a \times 0 = 0 \times a = 0$
- **5.** (-b) a = -ba

- **2.** (c-b) a = ca ba
- **4.** $a \times (-c) = -ac$
- **6.** (-a)(-b) = ab

Démonstration

1. Soient $a \in A$, $b \in A$ et $c \in A$, alors :

$$a(b-c) + ac = a[(b-c) + c] = a(b) = ab$$

De a(b-c) + ac = ab, on déduit que a(b-c) = ab - ac

2. Soient $a \in A$, $b \in A$ et $c \in A$, alors :

$$(c-b) a + ba = [(c-b) + b] a = (c) a = ca$$

De (c-b) a + ba = ca, on déduit que (c-b) a = ca - ba

- 3. Pour démontrer que $a \times 0 = 0 \times a = 0$, nous faisons b = c dans les identités a(b-c) = ab ac et (c-b) a = ca - cb
- 4. Pour démontrer que $a \times (-c) = -ac$, nous faisons b = 0 dans l'identité a(b-c) = ab ac
- 5. Pour démontrer que (-b) a=-ba, nous faisons c=0 dans l'identité (c-b) a=ca-ba
- 6. Soient $a \in A$, $b \in A$, alors nous avons :

$$(-a)(-b) + a(-b) = (-a)(-b) - ab$$

Or,
$$(-a)(-b) + a(-b) = (-a+a)(-b) = (0)(-b) = 0$$

Donc: $(-a)(-b) + a(-b) = (-a)(-b) - ab = 0 \Longrightarrow (-a)(-b) = ab$

Remarque 9:

Soit $(A, +, \times)$ un anneau. Pour $n \in \mathbb{Z}$ et $a \in A$, on peut définie a^n et na:

1. Si
$$n > 0$$
, $a^n = \underbrace{a \times a \times a \times \cdots \times a}_{n \text{ fois}}$ et $na = \underbrace{a + a + a + \cdots + a}_{n \text{ fois}}$
2. Si $n < 0$, $a^{-n} = \left(a^{-1}\right)^{-n}$ et $na = (-n)(-a)$

2. Si
$$n < 0$$
, $a^{-n} = (a^{-1})^{-n}$ et $na = (-n)(-a)$

3.2.3 Définition

Soit $(A, +, \times)$ un anneau.

- 1. On dit que $a \in A$ et $b \in A$, sont de véritables diviseurs de 0 si $a \neq 0$ et $b \neq 0$ et ab = 0
- 2. Un anneau sans diviseur de 0 est dit intègre
- **3.** $a \in A$ est dit nilpotent s'il existe $n \in \mathbb{N}^*$ tel que $a^n = 0$

Exemple 11:

 \mathbb{Z} , \mathbb{Q} , \mathbb{R} et \mathbb{C} sont des anneaux intègres

Exercice 6:

Nous considérons $\mathbb{Z} \times \mathbb{Z}$ dans lequel nous avons défini 2 opérations :

L'addition en donnant : (a,b) + (cd) = (a+c,b+d)

La multiplication en donnant : $(a, b) \times (cd) = (ac, bd)$

- 1. Montrer que $(\mathbb{Z} \times \mathbb{Z}, +, \times)$ est un anneau
- 2. Cet anneau est-il intègre? Existe-t-il des éléments nilpotents?

Remarque 10:

1. Si $a \in A$ est un véritable diviseur de zéro, alors a n'est pas régulier pour la multiplication, puisque si ab = 0 avec $a \neq 0$ et $b \neq 0$, nous avons :

$$a \times 0 = a \times b = 0$$
 mais $b \neq 0$

2. Si $a \in A$ est inversible, alors a n'est pas un diviseur de zéro. En effet :

$$ab = 0 \Longrightarrow a^{-1} \times ab = 0 \Longrightarrow b = 0$$

3. Dans un anneau intègre, nous avons la règle de simplification :

$$ab = ac \text{ et } a \neq 0 \Longrightarrow b = c$$

En effet, ab = ac et $a \neq 0 \iff a(b-c) = 0 \implies b-c = 0 \iff b = c$

3.2.4 Proposition

Soit $(A, +, \times)$ un anneau. Soient $x \in A$ et $y \in A$, deux éléments qui commutent, c'est à dire que xy = yx; alors :

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Démonstration

Nous ne faisons pas la démonstration; elle se fait par récurrence sur n, et nous la retrouvons dans le chapitre qui présente le raisonnement par récurrence.

Nous insistons sur l'importance que x et y commutent. En effet, si x et y ne commutent pas, nous avons, par exemple :

$$(x+y)^2 = (x+y)(x+y) = x^2 + xy + yx + y^2$$

3.2.5 Définition et théorème

Soit $(A, +, \times)$ un anneau.

- 1. Un sous-ensemble $B\subset A$, non vide, est un sous-anneau de A si $(B,+,\times)$ un lui même un anneau
- **2.** $B \subset A$ est un sous anneau de A si et seulement si :
 - B est non vide
 - Pour tout $x \in B$ et tout $y \in B$, $x y \in B$ et $xy \in B$

Démonstration

1. Supposons que B soit un sous-anneau

Alors, (B,+) étant un groupe, $0 \in B$ et donc $B \neq \emptyset$; de plus, pour tout $x \in B$ et tout $y \in B$, $x + (-y) = x - y \in B$

Comme B est un sous anneau, ma multiplication est une loi interne, et donc pour tout $x \in B$ et tout $y \in B$, $xy \in B$

- 2. Réciproquement, supposons B non vide et que $(\forall x \in B)$ et $(\forall y \in B), x y \in B$ et $xy \in B$
 - Que B soit non vide et que, $(\forall x \in B)$ et $(\forall y \in B)$, $x y \in B$, montre que (B, +) est un sous-groupe de (A, +)
 - Que, $(\forall x \in B)$ et $(\forall y \in B)$, $xy \in B$ montre que la multiplication est interne à B
 - \bullet La multiplication étant distributive dans A, elle l'est forcément dans B

Donc, $(B, +, \times)$ est un anneau

Remarque 11:

- 1. Si $(A, +, \times)$ est un anneau commutatif et intègre, il en est de même de tout sous-anneau.
- 2. Pour montrer qu'un ensemble A est un anneau, il est possible de démontrer que c'est un sous-anneau d'un anneau « plus gros », contenant A
- 3. Les sous-anneaux de $(\mathbb{Z}, +, \times)$ sont tous du type $(n\mathbb{Z}, +, \times)$ où $n \in \mathbb{N}^*$

Exercice 7:

 $(\mathbb{R}^{\mathbb{R}}, +, \times)$ est l'anneau commutatif et unitaire des fonctions numériques d'une variable réelle à valeurs dans \mathbb{R} . Pour $x_0 \in \mathbb{R}$, on appelle

$$A(x_0) = \{ f \in \mathbb{R}^{\mathbb{R}} \text{ telles que } f(x_0) = 0 \}$$

Il faut montrer que $(A(x_0), +, \times)$ est un sous-anneau de $\mathbb{R}^{\mathbb{R}}$

3.2.6 Définition d'idéal

Soit $(A, +, \times)$ un anneau

1. On appelle idéal à gauche de A, tout sous groupe (I,+) de (A,+) tel que :

$$(\forall a \in A) (\forall i \in I) (a \times i \in I)$$

2. On appelle idéal à droite de A, tout sous groupe (I,+) de (A,+) tel que :

$$(\forall a \in A) (\forall i \in I) (i \times a \in I)$$

3. Un idéal bilatère est un idéal à droite et à gauche

Exemple 12:

- 1. Si $(A, +, \times)$ est un anneau commutatif, il n'y a alors que des idéaux bilatères
- 2. Les idéaux de $(\mathbb{Z}, +, \times)$ sont de la forme $n\mathbb{Z}$
- 3. Si $(A, +, \times)$ est un anneau commutatif, alors pour tout $y_0 \in A$, l'ensemble

$$y_0 \times A = \{x \in A \text{ tels qu'il existe } a \in A \text{ tel que } x = a \times y_0\}$$

est un idéal de A

4. L'ensemble $A(x_0) = \{ f \in \mathbb{R}^{\mathbb{R}} \text{ telles que } f(x_0) = 0 \}$ est un idéal de $(\mathbb{R}^{\mathbb{R}}, +, \times)$

3.2.7 Proposition

Soit $(A, +, \times)$ un anneau

Si I et J sont 2 idéaux à gauche de A, alors $I \cap J$ est un idéal à gauche de A

Démonstration

Soient $(A, +, \times)$ un anneau et I et J 2 idéaux à gauche de A.

- Tout d'abord, (I, +) et (J, +) sont 2 sous-groupes de (A, +) et donc $(I \cap J, +)$ est aussi un sous-groupe de (A, +)
- Soient $a \in A$ et $x \in I \cap J$
 - Comme $x \in I$, et que I est un idéal à gauche, alors $a \times x \in I$
 - De même, comme $x \in J$, et que J est un idéal à gauche, alors $a \times x \in J$

Et donc, $a \times x \in I \cap J$

En conclusion, $I \cap J$ est un idéal à gauche de A

Remarque 12:

Nous avons le même résultat pour les idéaux à droite et les idéaux bilatères.

3.2.8 Définition

Soit $(A, +, \times)$ un anneau commutatif

- 1. On appelle idéal principal, tout idéal de la forme $a \times A = A \times a$; on note souvent ce type d'idéal $a \times \overline{A = A \times a = (a)}$
- 2. Un anneau est dit principal si tout idéal de A est principal

Exemple 13:

Exemple d'anneau principal : \mathbb{Z}

3.2.9 Définition d'homomorphisme d'anneaux

Soient $(A, +, \times)$ et $(A_1, +, \times)$ 2 anneaux. Soit $f: A \longrightarrow A_1$ une aplication. f est un homomorphisme d'anneaux si et seulement si, pour tout $x \in A$ et tout $y \in A$:

$$\begin{cases} f(x+y) = f(x) + f(y) \\ f(x \times y) = f(x) \times f(y) \end{cases}$$

Remarque 13:

Le fait que, pour tout $x \in A$ et tout $y \in A$, nous ayions f(x+y) = f(x) + f(y), fait de f un homomorphisme du groupe (A, +) dans le groupe $(A_1, +)$

Exemple 14:

Exemple d'homomorphisme d'anneaux :

$$\left\{ \begin{array}{ccc} f:\mathbb{C} & \longrightarrow & \mathbb{C} \\ z & \longmapsto & f(z) = \overline{z} \end{array} \right.$$

3.2.10 Théorème

- 1. La composée de 2 homomorphismes d'anneaux est un homomorphisme d'anneaux
- 2. Soit $f:A\longrightarrow A_1$ un homomorphisme d'anneaux ; alors :
 - (a) f(0) = 0
 - **(b)** Pour tout $x \in A$, f(-x) = -f(x)
 - (c) f(A) est un sous-anneau de A_1
 - (d) $\ker f = \{x \in A \text{ tel que } f(x) = 0\} = f^{-1}(\{0\}) \text{ est un idéal bilatère de } A$

<u>Démonstration</u>

1. On démontre que la composée de 2 homomorphismes d'anneaux est un homomorphisme d'anneaux Soient $(A, +, \times)$, $(A_1, +, \times)$ et $(A_2, +, \times)$ 3 anneaux.

Soient $f:A\longrightarrow A_1$ et $g:A_1\longrightarrow A_2$ 2 homomorphismes d'anneaux.

g et f étant des homomorphismes de groupes, $g\circ f$ est aussi un homomorphisme de groupe et donc $g\circ f\left(x+y\right)=g\circ f\left(x\right)+g\circ f\left(y\right)$

Regardons maintenant la multiplication ; pour tout $x \in A$ et $y \in A$, nous avons :

$$g \circ f(x \times y) = g[f(x \times y)] = g[f(x) \times f(y)] = g[f(x)] \times g[f(y)] = g \circ f(x) \times g \circ f(y)$$

 $g \circ f$ est bien un homomorphisme d'anneaux

- 2. Soit $f: A \longrightarrow A_1$ un homomorphisme d'anneaux
 - (a) Les propriétés f(0) = 0 et f(-x) = -f(x) pour tout $x \in A$ sont des propriétés de l'homomorphisme de groupe
 - (b) Montrons que f(A) est un sous-anneau de A_1
 - \triangleright Par les propriétés d'homomorphisme de groupe, nous savons déjà que (f(A), +) est un sous-groupe de $(A_1, +)$
 - \triangleright Soient $y_1 \in f(A)$ et $y_2 \in f(A)$

Il existe alors $x_1 \in A$ et $x_2 \in A$ tels que $y_1 = f(x_1)$ et $y_2 = f(x_2)$

A étant un anneau, $x_1 \times x_2 \in A$ et donc $f(x_1 \times x_2) \in f(A)$. f étant un homomorphisme d'anneaux, $f(x_1 \times x_2) = f(x_1) \times f(x_2) = y_1 \times y_2$ et donc, $y_1 \times y_2 \in f(A)$

f(A) est donc un sous-anneau de A_1

- (c) Montrons que $\ker f$ est un idéal bilatère de A
 - \triangleright Comme f est un homomorphisme de groupe additif, ker f est un sous-groupe de A
 - ightharpoonup Soit $a \in A$ et $k \in \ker f$; il faut montrer que $a \times k \in \ker f$ et $k \times a \in \ker f$ Nous avons $f(a \times k) = f(a) \times f(k) = f(a) \times 0 = 0$ et donc $a \times k \in \ker f$ Nous démontrerions de même que $k \times a \in \ker f$

 $\ker f$ est donc un idéal bilatère de A

3.2.11 Théorème

- 1. On appelle isomorphisme d'anneaux tout homomorphisme d'anneaux bijectif
- 2. Soient $(A,+,\times)$ et $(A_1,+,\times)$ 2 anneaux et $f:A\longrightarrow A_1$ un isomorphisme d'anneaux; alors $f^{-1}A_1:\longrightarrow A$ est aussi un isomorphisme d'anneaux

Démonstration

- 1. f est déjà un isomorphisme de groupe et $f^{-1}A_1:\longrightarrow A$ est aussi un isomorphisme de groupe
- 2. Soient $y_1 \in A_1$ et $y_2 \in A_1$; il faut montrer que $f^{-1}(y_1 \times y_2) = f^{-1}(y_1) \times f^{-1}(y_2)$ Il existe donc $x_1 \in A$ et $x_2 \in A$ uniques tels que $y_1 = f(x_1)$ et $y_2 = f(x_2)$; donc:

$$f^{-1}(y_1 \times y_2) = f^{-1}[f(x_1) \times f(x_2)] = f^{-1}[f(x_1 \times x_2)] = x_1 \times x_2 = f^{-1}(y_1) \times f^{-1}(y_2)$$

Ce que nous voulions

 $f^{-1}A_1:\longrightarrow A$ est donc un isomorphisme d'anneaux