Chapitre 4

L'ensemble \mathbb{Z} des entiers relatifs

4.1 Une construction de l'ensemble \mathbb{Z}

4.1.1 Proposition

On définit sur $\mathbb{N}^2 = \mathbb{N} \times \mathbb{N}$ la relation \mathcal{R} par :

$$(\forall (n,p) \in \mathbb{N}^2) (\forall (n',p') \in \mathbb{N}^2) ((n,p) \mathcal{R} (n',p') \iff n+p'=n'+p)$$

La relation \mathcal{R} est une relation d'équivalence sur \mathbb{N}^2 .

Démonstration

- 1. De manière évidente, **cette relation est réflexive.** En effet, soit $(n, p) \in \mathbb{N}^2$; alors n + p = n + p et donc $(n, p) \mathcal{R}(n, p)$
- 2. De même, **cette relation est symétrique** Soient $(n,p) \in \mathbb{N}^2$ et $(n',p') \in \mathbb{N}^2$ tels que $(n,p) \mathcal{R}(n',p')$ alors n+p'=n'+p et n'+p=n+p', c'est à dire $(n',p') \mathcal{R}(n,p)$
- 3. Et pour terminer, soient $(n,p) \in \mathbb{N}^2$, $(n',p') \in \mathbb{N}^2$ et $(n'',p'') \in \mathbb{N}^2$ tels que $(n,p) \mathcal{R}(n',p')$ et $(n',p') \mathcal{R}(n'',p'')$.

Alors n+p'=n'+p et n'+p''=n''+p' et donc, n+p'+n'+p''=n'+p+n''+p', c'est à dire, par régularité de l'addition dans \mathbb{N} (cf point 1-d de2.1.1), n+p''=n''+p, c'est à dire $(n,p)\mathcal{R}(n'',p'')$

La relation est donc transitive

La relation \mathcal{R} est bien une relation d'équivalence sur \mathbb{N}^2

Remarque 1:

On peut remarquer que $(n, p) \mathcal{R}(n', p)$ veut dire que n - p = n' - p'....sauf que la soustraction n'est pas définie sur \mathbb{N} (Donc, patience!!)

4.1.2 Définition

L'ensemble quotient \mathbb{N}^2/\mathcal{R} est noté \mathbb{Z} et ses éléments sont appelés les entiers relatifs.

Remarque 2:

- 1. Rappelons que l'ensemble quotient est un ensemble de classes d'équivalence
- 2. Pour $(n,p) \in \mathbb{N}^2$, nous notons $\mathcal{C}_{\mathcal{R}}[(n,p)]$, la classe d'équivalence modulo \mathcal{R} du couple (n,p), c'est à dire :

$$\mathcal{C}_{\mathcal{R}}\left[(n,p)\right] = \left\{(a,b) \in \mathbb{N}^2 \text{ tels que } (n,p) \,\mathcal{R}\left(a,b\right)\right\}$$

- 3. Ainsi:
 - ▶ La classe d'équivalence du couple d'entiers naturels (1,4) définit l'entier relatif

$$C_{\mathcal{R}}[(1,4)] = \{(a,b) \in \mathbb{N}^2 \text{ tels que } (1,4) \,\mathcal{R}(a,b)\} = \{(k,k+3) \text{ avec } k \in \mathbb{N}\}$$

▶ La classe d'équivalence du couple d'entiers naturels (7,2) définit l'entier relatif

$$\mathcal{C}_{\mathcal{R}}\left[(7,2)\right] = \left\{(a,b) \in \mathbb{N}^2 \text{ tels que } (7,2) \,\mathcal{R}\left(a,b\right)\right\} = \left\{(k+5,k) \text{ avec } k \in \mathbb{N}\right\}$$

▶ La classe d'équivalence du couple d'entiers naturels (0,0) définit l'entier relatif

$$C_{\mathcal{R}}[(0,0)] = \{(a,b) \in \mathbb{N}^2 \text{ tels que } (0,0) \,\mathcal{R}(a,b)\} = \{(k,k) \text{ avec } k \in \mathbb{N}\}$$

4.1.3 Définition et proposition

1. <u>Définition de l'addition dans \mathbb{N}^2 </u> Pour tout $(a,b)\in\mathbb{N}^2$ et tout $(c,d)\in\mathbb{N}^2$, nous avons :

$$(a,b) + (c,d) = (a+c,b+d)$$

Cette addition est associative, commutative et possède un élément neutre : (0,0)

2. La relation d'équivalence \mathcal{R} est compatible avec l'addition de \mathbb{N}^2 C'est à dire que pour $(a,b) \in \mathbb{N}^2$, $(a_1,b_1) \in \mathbb{N}^2$, $(c,d) \in \mathbb{N}^2$ et $(c_1,d_1) \in \mathbb{N}^2$, si $(a,b)\mathcal{R}(c,d)$ et $(a_1,b_1)\mathcal{R}(c_1,d_1)$, alors :

$$(a,b) + (a_1,b_1) \mathcal{R}(c,d) + (c_1,d_1) \iff (a+a_1,b+b_1) \mathcal{R}(c+c_1,d+d_1)$$

Démonstration

- 1. La démonstration du premier point est simple et laissée aux lecteurs. Il suffit d'utiliser les propriétés de l'addition dans \mathbb{N} . A ce sujet, il faut bien voir que le signe d'addition dans (a,b)+(c,d) est un signe d'addition dans \mathbb{N}^2 , alors que le signe addition dans les composantes du couple (a+c,b+d) sont des additions dans \mathbb{N}
- 2. Soient $(a,b) \in \mathbb{N}^2$, $(a_1,b_1) \in \mathbb{N}^2$, $(c,d) \in \mathbb{N}^2$ et $(c_1,d_1) \in \mathbb{N}^2$, tels que $(a,b) \mathcal{R}(c,d)$ et $(a_1,b_1) \mathcal{R}(c_1,d_1)$, alors:

$$\triangleright (a,b) \mathcal{R}(c,d) \iff a+d=b+c$$

$$(a_1, b_1) \mathcal{R}(c_1, d_1) \iff a_1 + d_1 = b_1 + c_1$$

En additionnant, nous obtenons:

$$(a+d) + (a_1 + d_1) = (b+c) + (b_1 + c_1) \iff (a+a_1) + (d+d_1) = (b+b_1) + (c+c_1)$$

C'est à dire $(a+a_1,b+b_1)\mathcal{R}(c+c_1,d+d_1)$

4.1.4 Addition dans $\mathbb{Z} = \mathbb{N}^2 / \mathcal{R}$

1. <u>Définition de l'addition dans \mathbb{Z} </u> Soient $(a,b) \in \mathbb{N}^2$ et $(c,d) \in \mathbb{N}^2$ de classe d'équivalence modulo \mathcal{R} , $\mathcal{C}_{\mathcal{R}}[(a,b)]$ et $\mathcal{C}_{\mathcal{R}}[(c,d)]$. Nous définissons ainsi l'addition dans \mathbb{Z} par :

$$C_{\mathcal{R}}[(a,b)] + C_{\mathcal{R}}[(c,d)] = C_{\mathcal{R}}[(a+c,b+d)]$$

2. Si nous fixons deux entiers relatifs n et p dans \mathbb{Z} , nous pouvons choisir n'importe quel représentant $(a,b)\in\mathbb{N}^2$ de n

C'est-à-dire que n'importe quel couple d'entiers naturels $(a,b) \in \mathbb{N}^2$ tel que $n = \mathcal{C}_{\mathcal{R}}\left[(a,b)\right]$ et n'importe quel représentant $(c,d) \in \mathbb{N}^2$ de p tel que $p = \mathcal{C}_{\mathcal{R}}\left[(c,d)\right]$, la somme (a+c,b+d) définira toujours la même classe d'équivalence $\mathcal{C}_{\mathcal{R}}\left[(a+c,b+d)\right] = n+p$

Démonstration

Soit $n \in \mathbb{Z}$ et $p \in \mathbb{Z}$, $(a,b) \in \mathbb{N}^2$ et $(c,d) \in \mathbb{N}^2$ tels que $n = \mathcal{C}_{\mathcal{R}}[(a,b)]$ et $p = \mathcal{C}_{\mathcal{R}}[(c,d)]$. Alors, par définition de l'addition dans \mathbb{Z} , $n+p = \mathcal{C}_{\mathcal{R}}[(a,b)] + \mathcal{C}_{\mathcal{R}}[(c,d)] = \mathcal{C}_{\mathcal{R}}[(a+c,b+d)]$ Soit $(a_1,b_1) \in \mathbb{N}^2$ tel que $(a_1,b_1) \mathcal{R}(a,b)$, c'est à dire que $\mathcal{C}_{\mathcal{R}}[(a,b)] = \mathcal{C}_{\mathcal{R}}[(a_1,b_1)] = n$ De même, soit $(c_1,d_1) \in \mathbb{N}^2$ tel que $(c_1,d_1)\mathcal{R}(c,d)$, c'est à dire que $\mathcal{C}_{\mathcal{R}}[(c,d)] = \mathcal{C}_{\mathcal{R}}[(c_1,d_1)] = p$. Alors:

$$n+p=\mathcal{C}_{\mathcal{R}}\left[(a,b)\right]+\mathcal{C}_{\mathcal{R}}\left[(c,d)\right]=\mathcal{C}_{\mathcal{R}}\left[(a+c,b+d)\right]=\mathcal{C}_{\mathcal{R}}\left[(a_1,b_1)\right]+\mathcal{C}_{\mathcal{R}}\left[(c_1,d_1)\right]=\mathcal{C}_{\mathcal{R}}\left[(a_1+c_1,b_1+d_1)\right]$$

Comme $(a_1, b_1) \mathcal{R}(a, b)$ et $(c_1, d_1) \mathcal{R}(c, d)$, alors, d'après 4.1.3, nous avons $(a_1 + c_1, b_1 + d_1) \mathcal{R}(a + c, b + d)$, c'est à dire $\mathcal{C}_{\mathcal{R}}[(a_1 + c_1, b_1 + d_1)] = \mathcal{C}_{\mathcal{R}}[(a + c, b + d)] = n + p$. La somme est donc indépendante du représentant choisi.

4.1.5 Proposition :(\mathbb{Z} , +) est un groupe commutatif.

L'addition définie dans \mathbb{Z} en 4.1.4 est commutative, associative et admet la classe $\mathcal{C}_{\mathcal{R}}\left[(0,0)\right]$ pour élément neutre.

De plus, tout entier relatif admet un élément symétrique pour l'addition (qu'on appelle son opposé). Autrement dit, $(\mathbb{Z}, +)$ est un groupe commutatif.

Démonstration

1. Démontrons la commutativité

Soient $n \in \mathbb{Z}$, $p \in \mathbb{Z}$, $(a,b) \in \mathbb{N}^2$ et $(c,d) \in \mathbb{N}^2$ tels que $n = \mathcal{C}_{\mathcal{R}}[(a,b)]$ et $p = \mathcal{C}_{\mathcal{R}}[(c,d)]$. Alors:

$$n+p=\mathcal{C}_{\mathcal{R}}\left[(a,b)\right]+\mathcal{C}_{\mathcal{R}}\left[(c,d)\right]=\mathcal{C}_{\mathcal{R}}\left[(a+c,b+d)\right]=\mathcal{C}_{\mathcal{R}}\left[(c+a,d+b)\right]=\mathcal{C}_{\mathcal{R}}\left[(c,d)\right]+\mathcal{C}_{\mathcal{R}}\left[(a,b)\right]=p+n$$

L'addition est donc commutative

2. Démontrons l'associativité

Soient $n \in \mathbb{Z}$ $m \in \mathbb{Z}$, $p \in \mathbb{Z}$, $(a,b) \in \mathbb{N}^2$, $(c,d) \in \mathbb{N}^2$ et $(e,f) \in \mathbb{N}^2$ tels que $n = \mathcal{C}_{\mathcal{R}}[(a,b)]$, $m = \mathcal{C}_{\mathcal{R}}[(c,d)]$ et $p = \mathcal{C}_{\mathcal{R}}[(e,f)]$; alors:

$$\begin{split} n + (m+p) &= & \mathcal{C}_{\mathcal{R}}\left[(a,b)\right] + \left(\mathcal{C}_{\mathcal{R}}\left[(c,d)\right] + \mathcal{C}_{\mathcal{R}}\left[(e,f)\right]\right) \\ &= & \mathcal{C}_{\mathcal{R}}\left[(a,b)\right] + \mathcal{C}_{\mathcal{R}}\left[(c+e,d+f)\right] \\ &= & \mathcal{C}_{\mathcal{R}}\left[(a+c+e,b+d+f)\right] = \mathcal{C}_{\mathcal{R}}\left[((a+c)+e,(b+d)+f)\right] \\ &= & \left(\mathcal{C}_{\mathcal{R}}\left[(a+c,b+d)\right]\right) + \mathcal{C}_{\mathcal{R}}\left[(e,f)\right] \\ &= & \left(\mathcal{C}_{\mathcal{R}}\left[(a,b)\right] + \mathcal{C}_{\mathcal{R}}\left[(c,d)\right]\right) + \mathcal{C}_{\mathcal{R}}\left[(e,f)\right] \\ &= & (n+m)+p \end{split}$$

Nous avons donc n + (m + p) = (n + m) + p et l'addition est bien associative sur Z

3. Recherche de l'élément neutre

Nous n'allons pas chercher très loin!! Il est évident que $\mathcal{C}_{\mathcal{R}}[(0,0)]$ est l'élément neutre pour l'addition

4. Recherche de l'élément symétrique

Soit
$$(a,b) \in \mathbb{N}^2$$
 et $n = \mathcal{C}_{\mathcal{R}}[(a,b)]$.

Il est donc évident que $n_1 = \mathcal{C}_{\mathcal{R}}[(b, a)]$ est tel que

$$n + n_1 = \mathcal{C}_{\mathcal{R}}\left[(a,b)\right] + \mathcal{C}_{\mathcal{R}}\left[(b,a)\right] = \mathcal{C}_{\mathcal{R}}\left[(a+b,a+b)\right] = \mathcal{C}_{\mathcal{R}}\left[(0,0)\right]$$

Ainsi $n_1 = \mathcal{C}_{\mathcal{R}}[(b, a)]$ est l'opposé de $n = \mathcal{C}_{\mathcal{R}}[(a, b)]$

 $(\mathbb{Z},+)$ est donc un groupe commutatif.

4.1.6 Écriture canonique des entiers relatifs

Tout entier relatif $n \in \mathbb{Z}$ admet un unique représentant dont au moins l'un des termes est nul.

Démonstration

Soit $n = \mathcal{C}_{\mathcal{R}}[(a,b)]$ un entier relatif.

- \triangleright Si n admet un représentant de la forme (m,0), cela signifie alors que $(a,b)\mathcal{R}(m,0)$ et donc a+0=m+b. Cela suppose donc que $b\leqslant a$, et dans ce cas on a nécessairement m=a-b.
- \triangleright Si, n admet un représentant de la forme (0, m), cela signifie que alors que $(a, b) \mathcal{R}(0, m)$ et donc que a + m = 0 + b. Cela suppose donc que $a \le b$, et dans ce cas m vaut nécessairement b a.

Finalement, comme \leq est une relation d'ordre total sur \mathbb{N} , on a nécessairement $a \leq b$ ou $b \leq a$. Si $b \leq a$, alors $n = \mathcal{C}_{\mathcal{R}}[(a-b,0)]$, et si $a \leq b$, alors $n = \mathcal{C}_{\mathcal{R}}[(0,b-a)]$

4.1.7 Notations

- 1. Pour tout $m \in \mathbb{N}$ la classe $\mathcal{C}_{\mathcal{R}}\left[(m,0)\right]$ est notée +m, et la classe $\mathcal{C}_{\mathcal{R}}\left[(0,m)\right]$ est notée -m.
- 2. Dans les deux cas, m est appelé la <u>valeur absolue</u> de l'entier relatif, et on écrit m=|+m|=|-m|

Remarque 3:

- 1. Les notations $\mathcal{C}_{\mathcal{R}}[(m,0)] = +m$ et $\mathcal{C}_{\mathcal{R}}[(0,m)] = -m$ ne sont pas si innocentes que cela puisque, pour l'addition dans $\mathbb{Z},\mathcal{C}_{\mathcal{R}}[(m,0)]$ et $\mathcal{C}_{\mathcal{R}}[(0,m)]$ sont symétriques.
- 2. Les notations précédentes donnent pour m=0, $\mathcal{C}_{\mathcal{R}}[(m,0)]=+0=-0$. Et 0 est le seul entier naturel m tel que +m=-m.

En effet, si m vérifie +m=-m, on a $\mathcal{C}_{\mathcal{R}}[(m,0)]=\mathcal{C}_{\mathcal{R}}[(0,m)]$, c'est-à-dire m+m=0. Mais alors m=0. On convient alors de noter plus simplement 0 la classe de (0,0), qui coïncide avec +0 et -0.

3. Nous sommes désormais en mesure de définir les notations classiques

$$\mathbb{Z}^+ = \{+m, m \in \mathbb{N}\} \quad \mathbb{Z}^- = \{-m, m \in \mathbb{N}\} \quad \mathbb{Z}^{+*} = \{+m, m \in \mathbb{N}^*\}, \quad \mathbb{Z}^{-*} = \{-m, m \in \mathbb{N}^*\}$$

4.1.8 Proposition

- 1. Nous avons $\mathbb{Z}=\mathbb{Z}^+\cup\mathbb{Z}^-$ et $\mathbb{Z}^+\cap\mathbb{Z}^-=\{0\}$
- 2. Les ensembles \mathbb{Z}^+ et \mathbb{Z}^- sont stables par l'addition.

Démonstration

- 1. Démonstration du premier point
 - (a) Soit $m \in \mathbb{Z}$.
 - \rightarrow Alors, d'après 4.1.6, il existe $a \in \mathbb{N}$ tel que $m = \mathcal{C}_{\mathcal{R}}[(a,0)]$ ou $m = \mathcal{C}_{\mathcal{R}}[(0,a)]$
 - \to Donc $m \in \mathbb{Z}^+$ ou $m \in \mathbb{Z}^-$ et donc $m \in \mathbb{Z}^+ \cup \mathbb{Z}^-$. C'est à dire $\mathbb{Z} \subset \mathbb{Z}^+ \cup \mathbb{Z}^-$
 - \to La démonstration de la réciproque $\mathbb{Z}^+ \cup \mathbb{Z}^- \subset \mathbb{Z}$ est évidente

Donc $\mathbb{Z} = \mathbb{Z}^+ \cup \mathbb{Z}^-$

(b) Soit, maintenant $m \in \mathbb{Z}^+ \cap \mathbb{Z}^-$

Toujours d'après 4.1.6, il existe $a \in \mathbb{N}$ et $b \in \mathbb{N}$ tel que $m = \mathcal{C}_{\mathcal{R}}[(a,0)]$ et $m = \mathcal{C}_{\mathcal{R}}[(0,b)]$ Nous avons alors $\mathcal{C}_{\mathcal{R}}[(a,0)] = \mathcal{C}_{\mathcal{R}}[(0,b)]$, c'est à dire $(a,0) \mathcal{R}(0,b)$. Or :

$$(a,0) \mathcal{R}(0,b) \Longleftrightarrow a+b=0$$

Comme $a \in \mathbb{N}$ et $b \in \mathbb{N}$, nous avons $a + b = 0 \iff a = b = 0$ et donc $m = \mathcal{C}_{\mathcal{R}}[(0,0)] = 0$

- 2. Démonstration du second point
 - → Soient $m \in \mathbb{Z}^+$ et $p \in \mathbb{Z}^+$; nous allons monter que $m + p \in \mathbb{Z}^+$ Il existe $a \in \mathbb{N}$ et $b \in \mathbb{N}$ tels que $m = \mathcal{C}_{\mathcal{R}}[(a,0)]$ et $p = \mathcal{C}_{\mathcal{R}}[(b,0)]$. Alors:

$$m + p = \mathcal{C}_{\mathcal{R}}[(a,0)] + \mathcal{C}_{\mathcal{R}}[(b,0)] = \mathcal{C}_{\mathcal{R}}[(a+b,0)]$$

Ce qui démontre bien que $m + p \in \mathbb{Z}^+$

 \rightarrow Nous démontrerions de la même manière que si $m \in \mathbb{Z}^-$ et $p \in \mathbb{Z}^-$ alors $m + p \in \mathbb{Z}^-$

4.1.9 Plongement de $\mathbb N$ dans $\mathbb Z$

L'application $\Phi: \mathbb{N} \longrightarrow \mathbb{Z}$ définie par :

$$\begin{cases}
\Phi: \mathbb{N} & \longrightarrow \mathbb{Z}^+ \\
n & \longmapsto \Phi(n) = +n = \mathcal{C}_{\mathcal{R}}[(n,0)]
\end{cases}$$

est une bijection telle que, pour tout $m \in \mathbb{N}$ et tout $n \in \mathbb{N}$, nous avons $\Phi(m+n) = \Phi(m) + \Phi(n)$

Démonstration

- 1. L'application Φ est bien bijective
 - \rightarrow Elle est injective

Supposons en effet que, pour $m \in \mathbb{N}$ et $n \in \mathbb{N}$, nous ayons $\Phi(m) = \Phi(n)$. Alors :

$$\Phi\left(m\right) = \Phi\left(n\right) \Longleftrightarrow \mathcal{C}_{\mathcal{R}}\left[\left(m,0\right)\right] = \mathcal{C}_{\mathcal{R}}\left[\left(n,0\right)\right] \Longleftrightarrow \left(m,0\right) \mathcal{R}\left(n,0\right) \Longleftrightarrow m = n$$

- Φ est donc bien injective
- \to L'application Φ est surjective Soit $m \in \mathbb{Z}^+$; il existe alors $a \in \mathbb{N}$ tel que $m = \mathcal{C}_{\mathcal{R}}[(a,0)]$ et nous avons alors $\Phi(a) = m$
- 2. Soient $m \in \mathbb{N}$ et $n \in \mathbb{N}$. Alors :

$$\Phi\left(m+n\right)=\mathcal{C}_{\mathcal{R}}\left[\left(m+n,0\right)\right]=\mathcal{C}_{\mathcal{R}}\left[\left(n,0\right)\right]+\mathcal{C}_{\mathcal{R}}\left[\left(m,0\right)\right]=\Phi\left(m\right)+\Phi\left(n\right)$$

Nous avons donc bien $\Phi\left(m+n\right) = \Phi\left(m\right) + \Phi\left(n\right)$

Remarque 4:

- 1. La proposition 4.1.9 permet d'identifier \mathbb{N} à \mathbb{Z}^+
- 2. Notation: Finalement, nous écrirons, pour tout $m \in \mathbb{N}$, $m = +m = \mathcal{C}_{\mathcal{R}}[(m,0)] = |+m| = |-m|$

4.1.10 Définition

Pour $n \in \mathbb{Z}$, nous notons -n l'opposé de n pour l'addition

Remarque 5:

Cette notation est bien cohérente avec les notions précédemment introduites : si $n \in \mathbb{N}$, -n est l'entier relatif opposé de +n, que l'on a identifié avec n lui-même.

4.1.11 Proposition

- 1. Pour $n \in \mathbb{Z}$ et $p \in \mathbb{Z}$, il existe un unique élément d de \mathbb{Z} , tel que p = n + d. Cet élément est la somme de p et de l'opposé de n : d = p + (-n).
- 2. Le nombre d défini ci-dessus est appelé la différence de p et n et est noté p-n.

Démonstration

 \rightarrow Le nombre d = p + (-n) convient puisque

$$n + (p + (-n)) = (n + (-n)) + p = 0 + p = p$$

 \rightarrow C'est le seul possible car si d_1 vérifie $p = n + d_1$, nous avons $n + d_1 = n + d$ et donc $d_1 = d$ par régularité.

Remarque 6:

- 1. Notez que le symbole \ll \gg recouvre trois sens bien distincts :
 - (a) Dans l'écriture -3, c'est le signe de l'entier relatif $\mathcal{C}_{\mathcal{R}}[(0,3)]$
 - (b) Dans l'écriture -n (où $n \in \mathbb{Z}$) il sert à désigner l'opposé de n.
 - (c) Dans l'écriture p-n, il désigne la différence de p et n.
- 2. La proposition 4.1.11 est en fait valable dans n'importe quel groupe commutatif dont la loi est notée additivement.

4.1.12 Proposition

Pour tout
$$(n,p) \in \mathbb{Z}^2$$
, nous avons $-(n+p) = (-n) + (-p)$ et $n-p = -(p-n)$.

Démonstration

Soit $(n, p) \in \mathbb{Z}^2$

1. Alors (-n) + (-p) est l'opposé de n + p puisque

$$(-n) + (-p) + n + p = (-n) + n + (-p) + p = ((-n) + n) + ((-p) + p) = 0 + 0 = 0$$

2. De même n-p est l'opposé de p-n puisque

$$(n-p) + (p-n) = n + (-p) + p + (-n) = (n + (-n)) + ((-p) + p) = 0 + 0 = 0$$

4.1.13 Définition d'une multiplication dans \mathbb{N}^2

1. Définition de la multiplication dans \mathbb{N}^2

 $(a_1, b_1) \mathcal{R}(c_1, d_1)$, alors :

Pour tout $(a,b) \in \mathbb{N}^2$ et tout $(c,d) \in \mathbb{N}^2$, nous avons :

$$(a,b) \times (c,d) = (ac + bd, ad + bc)$$

Cette multiplication est associative, commutative, possède un élément neutre : (1,0) et est distributive par rapport à l'addition

2. La relation d'équivalence \mathcal{R} est compatible avec la multiplication de \mathbb{N}^2 C'est à dire que pour $(a,b)\in\mathbb{N}^2$, $(a_1,b_1)\in\mathbb{N}^2$, $(c,d)\in\mathbb{N}^2$ et $(c_1,d_1)\in\mathbb{N}^2$, si $(a,b)\mathcal{R}(c,d)$ et

$$(a,b) \times (a_1,b_1) \mathcal{R}(c,d) \times (c_1,d_1) \Longleftrightarrow (aa_1+bb_1,ab_1+a_1b) \mathcal{R}(cc_1+dd_1,cd_1+dc_1)$$

Démonstration

- 1. Nous laissons la démonstration du premier point aux soins du lecteur. C'est essentiellement calculatoire
- 2. Nous allons faire la démonstration du second point en 2 temps.
 - Dans un premier temps, soient $(a,b) \in \mathbb{N}^2$, $(c,d) \in \mathbb{N}^2$ tels que $(a,b) \mathcal{R}(c,d)$. Nous allons démontrer que pour tout couple $(a_1,b_1) \in \mathbb{N}^2$, alors $(a,b) \times (a_1,b_1) \mathcal{R}(c,d) \times (a_1,b_1)$. Nous avons $(a,b) \mathcal{R}(c,d) \iff a+d=b+c$ et

$$(a,b) \times (a_1,b_1) = (aa_1 + bb_1, ab_1 + a_1b)$$
 et $(c,d) \times (a_1,b_1) = (ca_1 + db_1, cb_1 + a_1d)$

Alors:

$$(aa_1 + bb_1) + (cb_1 + a_1d) = a_1 (a+d) + b_1 (b+c)$$

$$= a_1 (b+c) + b_1 (a+d) \text{ puisque } a+d = b+c$$

$$= a_1b + a_1c + ab_1 + b_1d$$

$$= (a_1c + b_1d) + (ab_1 + a_1b)$$

Et nous avons donc bien $(a,b) \times (a_1,b_1) \mathcal{R}(c,d) \times (a_1,b_1)$

• Soient $(a,b) \in \mathbb{N}^2$, $(a_1,b_1) \in \mathbb{N}^2$, $(c,d) \in \mathbb{N}^2$ et $(c_1,d_1) \in \mathbb{N}^2$ tels que $(a,b)\mathcal{R}(c,d)$ et $(a_1,b_1)\mathcal{R}(c_1,d_1)$. Alors, d'après le point précédent :

$$(a,b) \times (a_1,b_1) \mathcal{R}(c,d) \times (a_1,b_1) \text{ et } (a_1,b_1) \times (c,d) \mathcal{R}(c_1,d_1) \times (c,d)$$

Et donc, par transitivité, nous avons $(a,b) \times (a_1,b_1) \mathcal{R}(c,d) \times (c_1,d_1)$

4.1.14 Définition de la multiplication dans \mathbb{Z} et premières propriétés

1. Pour $(a,b) \in \mathbb{N}^2$ et $(c,d) \in \mathbb{N}^2$, nous définissons la multiplication dans \mathbb{Z} par :

$$\mathcal{C}_{\mathcal{R}}\left[(a,b)\right] \times \mathcal{C}_{\mathcal{R}}\left[(c,d)\right] = \mathcal{C}_{\mathcal{R}}\left[(a,b) \times (c,d)\right]$$

- 2. Cette multiplication est commutative, associative, admet un élément neutre $\mathcal{C}_{\mathcal{R}}\left[(1,0)\right]$ et est distributive par rapport à l'addition de \mathbb{Z}
- 3. Comme dans le cas de l'addition, la multiplication est indépendante du représentant choisi.

Démonstration

La démonstration doit beaucoup à 4.1.13 et 4.1.4 et est laissée au lecteur.

4.1.15 Proposition

- 1. Si $n \in \mathbb{Z}^+$ et $m \in \mathbb{Z}^-$ alors $m \times n \in \mathbb{Z}$
- 2. Si $n \in \mathbb{Z}^-$ et $m \in \mathbb{Z}^-$ alors $m \times n \in \mathbb{Z}^+$
- 3. Si $n \in \mathbb{Z}^+$ et $m \in \mathbb{Z}^+$ alors $m \times n \in \mathbb{Z}^+$

Démonstration

1. Si $n \in \mathbb{Z}^+$ et $m \in \mathbb{Z}^-$, alors $n = \mathcal{C}_{\mathcal{R}}[(n,0)]$ et $m = \mathcal{C}_{\mathcal{R}}[(0,m)]$. Alors:

$$m \times n = \mathcal{C}_{\mathcal{R}}[(n,0)] \times \mathcal{C}_{\mathcal{R}}[(0,m)] = \mathcal{C}_{\mathcal{R}}[(n,0) \times (0,m)] = \mathcal{C}_{\mathcal{R}}[(0,mn)]$$

Et donc $m \times n \in \mathbb{Z}^-$

2. Si $n \in \mathbb{Z}^-$ et $m \in \mathbb{Z}^-$, alors $n = \mathcal{C}_{\mathcal{R}}[(0,n)]$ et $m = \mathcal{C}_{\mathcal{R}}[(0,m)]$. Alors :

$$m\times n=\mathcal{C}_{\mathcal{R}}\left[\left(0,n\right)\right]\times\mathcal{C}_{\mathcal{R}}\left[\left(0,m\right)\right]=\mathcal{C}_{\mathcal{R}}\left[\left(0,n\right)\times\left(0,m\right)\right]=\mathcal{C}_{\mathcal{R}}\left[\left(mn,0\right)\right]$$

Et donc $m \times n \in \mathbb{Z}^+$

3. Si $n \in \mathbb{Z}^+$ et $m \in \mathbb{Z}^+$, alors $n = \mathcal{C}_{\mathcal{R}}[(n,0)]$ et $m = \mathcal{C}_{\mathcal{R}}[(m,0)]$. Alors :

$$m \times n = \mathcal{C}_{\mathcal{R}}[(n,0)] \times \mathcal{C}_{\mathcal{R}}[(m,0)] = \mathcal{C}_{\mathcal{R}}[(n,0) \times (m,0)] = \mathcal{C}_{\mathcal{R}}[(mn,0)]$$

Et donc $m \times n \in \mathbb{Z}^+$

4.1.16 Théorème

- 1. $(\mathbb{Z}, +, \times)$ est un anneau unitaire commutatif
- 2. Les nombres 1 et -1 sont les seuls éléments de \mathbb{Z}^* inversibles (admettant un symétrique pour la multiplication).
- 3. \mathbb{Z} est un anneau intègre, c'est à dire que, pour tout $n \in \mathbb{Z}$ et tout $p \in \mathbb{Z}$:

$$np = 0 \Longrightarrow n = 0 \text{ ou } p = 0$$

4. Pour tout $n \in \mathbb{Z}$, tout $p \in \mathbb{Z}$ et tout $q \in \mathbb{Z}$:

$$n \times 0 = 0$$
, $n(-p) = -(np)$ et $n \times (p-q) = np - nq$

5. Tout élément non nul de \mathbb{Z} est régulier pour la multiplication, c'est à dire :

$$(\forall n \in \mathbb{Z}^*), (\forall p \in \mathbb{Z}), (\forall q \in \mathbb{Z}), ((np = nq) \Longrightarrow (p = q))$$

Démonstration

La plupart des démonstrations de ce théorème utilisent les propriétés des entiers de l'ensemble $\mathbb N$ vues au chapitre 2

- 1. On montre que $(\mathbb{Z}, +, \times)$ est un anneau unitaire
 - \triangleright D'après 4.1.5, on sait que $(\mathbb{Z}, +)$ est un groupe commutatif
 - \triangleright D'après 4.1.14, la multiplication est commutative, associative, admet un élément neutre $1 = \mathcal{C}_{\mathcal{R}}[(1,0)]$ et est distributive par rapport à l'addition de \mathbb{Z}

Donc $(\mathbb{Z}, +, \times)$ est un anneau unitaire commutatif

2. On montre que 1 et -1 sont les seuls éléments inversibles de \mathbb{Z}^*

Soit $n \in \mathbb{Z}^*$ que nous supposons inversible et $(a,b) \in \mathbb{N}^2$, avec $a \neq b$, tel que $p = \mathcal{C}_{\mathcal{R}}[(a,b)]$ soit l'inverse de n

- \rightarrow Supposons a > b, alors $p = \mathcal{C}_{\mathcal{R}}\left[(a,b)\right] = \mathcal{C}_{\mathcal{R}}\left[(a-b,0)\right]$; alors $p \in \mathbb{N}^*$ et $p = \mathcal{C}_{\mathcal{R}}\left[(p,0)\right]$.
 - \triangleright Supposons que $n \in \mathbb{Z}^{*+}$ et que $n = \mathcal{C}_{\mathcal{R}}[(n,0)]$ Alors :

$$n \times p = 1 \iff \mathcal{C}_{\mathcal{R}}\left[(n,0)\right] \times \mathcal{C}_{\mathcal{R}}\left[(p,0)\right] = \mathcal{C}_{\mathcal{R}}\left[(1,0)\right]$$
$$\iff \mathcal{C}_{\mathcal{R}}\left[(np,0)\right] = \mathcal{C}_{\mathcal{R}}\left[(1,0)\right]$$

Ce qui signifie que $(np,0)\,\mathcal{R}\,(1,0),$ c'est à dire np=1 et donc n=p=1

Nous en concluons que si $n \in \mathbb{Z}^{*+}$ est inversible, alors n=1 et son inverse p est telque p=n=1

 \triangleright Supposons que $n \in \mathbb{Z}^{*-}$ et que $n = \mathcal{C}_{\mathcal{R}}[(0, -n)]$ Alors :

$$n \times p = 1 \iff \mathcal{C}_{\mathcal{R}}\left[(0, -n)\right] \times \mathcal{C}_{\mathcal{R}}\left[(p, 0)\right] = \mathcal{C}_{\mathcal{R}}\left[(1, 0)\right]$$
$$\iff \mathcal{C}_{\mathcal{R}}\left[(0, (-n) p)\right] = \mathcal{C}_{\mathcal{R}}\left[(1, 0)\right]$$

Ce qui signifie que $(0, (-n) p) \mathcal{R}(1, 0)$, c'est à dire 0 = 1 + (-n) p et donc (-n) p = -1, ce qui est impossible puisque $-n \in \mathbb{Z}^{*+}$ et $p \in \mathbb{Z}^{*+}$

- \rightarrow Supposons a < b, alors $p = \mathcal{C}_{\mathcal{R}}[(a,b)] = \mathcal{C}_{\mathcal{R}}[(0,b-a)]$; alors $p \in \mathbb{Z}^-$ et $p = \mathcal{C}_{\mathcal{R}}[(0,-p)]$.
 - \triangleright Supposons que $n \in \mathbb{Z}^{*+}$ et que $n = \mathcal{C}_{\mathcal{R}}[(n,0)]$ Alors :

$$n \times p = 1 \iff \mathcal{C}_{\mathcal{R}}\left[(n,0)\right] \times \mathcal{C}_{\mathcal{R}}\left[(0,-p)\right] = \mathcal{C}_{\mathcal{R}}\left[(1,0)\right] \\ \iff \mathcal{C}_{\mathcal{R}}\left[(0,(-p)n)\right] = \mathcal{C}_{\mathcal{R}}\left[(1,0)\right]$$

Ce qui signifie que $(0,(-p)\,n)\,\mathcal{R}\,(1,0)$, c'est à dire $0=1+(-p)\,n$ et donc $(-p)\,n=-1$, ce qui est impossible puisque $n\in\mathbb{Z}^{*+}$ et $p\in\mathbb{Z}^{*-}$

 \triangleright Supposons que $n \in \mathbb{Z}^{*-}$ et que $n = \mathcal{C}_{\mathcal{R}}[(0, -n)]$ Alors :

$$n \times p = 1 \iff \mathcal{C}_{\mathcal{R}}\left[(0, -n)\right] \times \mathcal{C}_{\mathcal{R}}\left[(0, -p)\right] = \mathcal{C}_{\mathcal{R}}\left[(1, 0)\right]$$
$$\iff \mathcal{C}_{\mathcal{R}}\left[((-n)(-p), 0)\right] = \mathcal{C}_{\mathcal{R}}\left[(1, 0)\right]$$

Ce qui signifie que $((-n)(-p),0) \mathcal{R}(1,0)$, c'est à dire (-n)(-p)=1 et donc $-n=1 \iff n=-1$ et $-p=1 \iff p=-1$

Nous en concluons que si $n \in \mathbb{Z}^{*-}$ est inversible, alors n=-1 et son inverse p est tel que p=n=-1

Ce que nous voulions

3. On démontre que $\mathbb Z$ est un anneau intègre

Soient $n \in \mathbb{Z}$ et $p \in \mathbb{Z}$ tels que np = 0

 \triangleright Supposons $n \in \mathbb{Z}^+$ et $p \in \mathbb{Z}^+$, alors $n = \mathcal{C}_{\mathcal{R}}[(n,0)]$ et $p = \mathcal{C}_{\mathcal{R}}[(p,0)]$ et nous avons alors :

$$\mathcal{C}_{\mathcal{R}}\left[(n,0)\right] \times \mathcal{C}_{\mathcal{R}}\left[(p,0)\right] = \mathcal{C}_{\mathcal{R}}\left[(0,0)\right] \iff \quad \mathcal{C}_{\mathcal{R}}\left[(n,0) \times (p,0)\right] = \mathcal{C}_{\mathcal{R}}\left[(0,0)\right] \\ \iff \quad \mathcal{C}_{\mathcal{R}}\left[(np,0)\right] = \mathcal{C}_{\mathcal{R}}\left[(0,0)\right]$$

Ce qui veut dire que $(np, 0) \mathcal{R}(0, 0)$, autrement dit np = 0.

D'après les propriétés de \mathbb{N} , alors, n=0 ou p=0

▷ La démonstration est tout à fait semblable si nous supposons $n \in \mathbb{Z}^-$ et $p \in \mathbb{Z}^-$. En effet, dans ce cas, $n = \mathcal{C}_{\mathcal{R}}[(0, -n)]$ et $p = \mathcal{C}_{\mathcal{R}}[(0, -p)]$ et nous avons alors :

$$\mathcal{C}_{\mathcal{R}}\left[(0,-n)\right] \times \mathcal{C}_{\mathcal{R}}\left[(0,-p)\right] = \mathcal{C}_{\mathcal{R}}\left[(0,0)\right] \iff \mathcal{C}_{\mathcal{R}}\left[(0,-n) \times (0,-p)\right] = \mathcal{C}_{\mathcal{R}}\left[(0,0)\right] \\ \iff \mathcal{C}_{\mathcal{R}}\left[\left((-n) \left(-p\right),0\right)\right] = \mathcal{C}_{\mathcal{R}}\left[(0,0)\right]$$

Ce qui veut dire que $((-n)(-p),0) \mathcal{R}(0,0)$, autrement dit (-n)(-p)=0.

D'après les propriétés de $\mathbb{N},$ alors, (-n)=0 ou (-p)=0, ce qui est équivalent à n=0 ou p=0

 \triangleright Supposons $n \in \mathbb{Z}^-$ et $p \in \mathbb{Z}^+$, alors $n = \mathcal{C}_{\mathcal{R}}[(0, -n)]$ et $p = \mathcal{C}_{\mathcal{R}}[(p, 0)]$ et nous avons alors :

$$\mathcal{C}_{\mathcal{R}}\left[\left(0,-n\right)\right] \times \mathcal{C}_{\mathcal{R}}\left[\left(p,0\right)\right] = \mathcal{C}_{\mathcal{R}}\left[\left(0,0\right)\right] \iff \quad \mathcal{C}_{\mathcal{R}}\left[\left(0,-n\right) \times \left(p,0\right)\right] = \mathcal{C}_{\mathcal{R}}\left[\left(0,0\right)\right] \\ \iff \quad \mathcal{C}_{\mathcal{R}}\left[\left(0,\left(-n\right)p\right)\right] = \mathcal{C}_{\mathcal{R}}\left[\left(0,0\right)\right]$$

Ce qui veut dire que $(0, (-n) p) \mathcal{R} (0, 0)$, autrement dit (-n) p = 0.

D'après les propriétés de \mathbb{N} , alors, (-n)=0 ou p=0, autrement dit n=0 ou p=0

 \mathbb{Z} est bien un anneau intègre

4. \triangleright Montrons que $n \times 0 = 0$

Nous avons $n \times 0 = n \times (0+0)$.

Par la distributivité, nous obtenons

$$n \times 0 = n \times 0 + n \times 0 \iff n \times 0 + 0 = n \times 0 + n \times 0$$

Par la régularité de l'addition, nous avons $n \times 0 = 0$

 \triangleright Montrons que n(-p) = -(np)

Nous avons:

$$n \times p + n \times (-p) = n \times (p + (-p)) = n \times 0 = 0$$

Ainsi, $n \times (-p)$ apparaît comme l'opposé de $n \times p$ pour l'addition, et donc

$$n\left(-p\right) = -\left(np\right) = -np$$

 \triangleright Montrons que $n \times (p-q) = np - nq$

Cette question ne pose pas de difficulté.

$$n \times (p-q) = n \times (p+(-q)) = n \times p + n \times (-q) = n \times p - (n \times q) = np - nq$$

ightharpoonup Montrons que tout élément non nul de $\mathbb Z$ est régulier pour la multiplication Soient $n\in\mathbb Z^*,\ p\in\mathbb Z$ et $q\in\mathbb Z$ tels que np=nq. Alors :

$$np = nq \iff np - nq = 0 \iff n \times (p - q) = 0$$

Comme $n \neq 0$, alors p - q = 0, c'est à dire p = q.

Ce que nous voulions

Remarque 7:

La multiplication dans \mathbb{Z} prolonge celle de \mathbb{N} .

4.1.17 Relation d'ordre dans \mathbb{Z}

1. Dans \mathbb{Z} , nous définissons la relation suivante :

$$(\forall x \in \mathbb{Z}) (\forall y \in \mathbb{Z}) ((x \leqslant y) \iff ((\exists p \in \mathbb{N}) (y = x + p)))$$

2. La relation $\ll \leqslant \gg$ est une relation d'ordre, compatible avec l'addition et la multiplication par un nombre positif

<u>Démonstration</u>

- 1. La relation « ≤ » est une relation d'ordre
 - $\, \triangleright \,$ La relation « $\leqslant \, \gg \,$ est réflexive

En effet, soit $x \in \mathbb{Z}$; alors, x = x + 0 et donc $x \leq x$

▶ La relation « ≤ » est antisymétrique

Soient $x \in \mathbb{Z}$ et $y \in \mathbb{Z}$ tels que $x \leqslant y$ et $y \leqslant x$. Alors, il existe $p \in \mathbb{N}$ et $q \in \mathbb{N}$ tels que $y = x + p \Longleftrightarrow y - x = p$ et $x = y + q \Longleftrightarrow y - x = -q$

Ce qui veut dire que p=-q. Comme $q\in\mathbb{N}$, alors $p\in\mathbb{Z}^-$ et donc de $p\in\mathbb{N}$ et de $p\in\mathbb{Z}^-$, nous en déduisons que p=q=0 et que donc x=y

 ${\,\vartriangleright\,} \text{ La relation } \ll \, \leqslant \, \gg \text{ est transitive }$

Soient $x \in \mathbb{Z}$, $y \in \mathbb{Z}$ et $z \in \mathbb{Z}$ tels que $x \leqslant y$ et $y \leqslant z$. Alors, il existe $p \in \mathbb{N}$ et $q \in \mathbb{N}$ tels que y = x + p et z = y + q

Alors, très simplement z = y + q = (x + p) + q = x + (p + q) et donc $x \le z$.

La relation $\ll \leqslant \gg$ est donc transitive

La relation $\ll \leqslant \gg$ est donc une relation d'ordre

- 2. La relation $\ll \leqslant \gg$ est compatible avec l'addition et la multiplication par un nombre positif
 - ${\,\vartriangleright\,}$ La relation ${\,\ll\,} \leqslant {\,\gg\,}$ est compatible avec l'addition

Soient $x \in \mathbb{Z}$, $y \in \mathbb{Z}$ et $z \in \mathbb{Z}$ tels que $x \leq y$. Alors, il existe $p \in \mathbb{N}$ tel que y = x + p

Alors y + z = x + p + z = (x + z) + p et donc $x + z \le y + z$

La relation $\ll \leqslant \gg$ est donc compatible avec l'addition

 \triangleright La relation « \le » est compatible avec la multiplication par un entier positif

Soient $x \in \mathbb{Z}$, $y \in \mathbb{Z}$ et $z \in \mathbb{Z}^+$ tels que $x \leq y$. Alors, il existe $p \in \mathbb{N}$ tel que y = x + p

Alors $y \times z = (x+p) \times z = (x \times z) + p \times z$. Comme $p \in \mathbb{N}$ et $z \in \mathbb{N}$, alors $pz \in \mathbb{N}$ et donc

 $x \times z \leq y \times z$ La relation « \leq » est donc compatible avec la multiplication par un entier positif

Remarque 8:

Lorsque, pour $x \in \mathbb{Z}$, $y \in \mathbb{Z}$ nous avons $x \leq y$, il existe alors $p \in \mathbb{N}$ tel que y = x + p. Cette égalité est donc équivalente à $y - x \in \mathbb{N} = \mathbb{Z}^+$

4.1.18 Proposition

La relation $\ll \leqslant \gg$ est une relation d'ordre total dans \mathbb{Z}

Démonstration

Nous avons, dans tous les cas $\mathbb{Z} = \mathbb{Z}^- \cup \mathbb{Z}^+$ et $\mathbb{Z}^- \cap \mathbb{Z}^+ = \{0\}$

Soit donc $n \in \mathbb{Z}$ et $p \in \mathbb{Z}$.

Alors $n - p \in \mathbb{Z}^+$ et, dans ce cas $p \leq n$

Ou bien $n - p \in \mathbb{Z}^- \iff p - n \in \mathbb{Z}^+$ et, dans ce cas $n \leqslant p$

A chaque fois n et p sont comparables et la relation d'ordre est donc totale.

Remarque 9:

1. On définit la relation **strictement inférieur** $\ll < \gg par$:

$$(\forall x \in \mathbb{Z}) (\forall y \in \mathbb{Z}) ((x < y) \iff ((x \leqslant y) \text{ et } (x \neq y)))$$

- 2. En utilisant la définition de la relation d'ordre « ≤ » vue en 4.1.17, notons les relation immédiates :
 - $\triangleright (x \in \mathbb{N}) \Longleftrightarrow (x \geqslant 0) \Longleftrightarrow (-x \leqslant 0)$
 - $\triangleright (x \in \mathbb{N}^*) \Longleftrightarrow (x > 0) \Longleftrightarrow (x \geqslant 1)$
 - $\triangleright (x \in \mathbb{Z}^-) \iff (x \leqslant 0) \iff (-x \geqslant 0)$
- 3. Second type de relation : $x \leq y \iff -x \geqslant -y$

En effet, $x \leq y \iff y - x \in \mathbb{N}$

Or, y-x=-x-(-y) et nous avons donc $-x-(-y)\in\mathbb{N},$ c'est à dire $-y\leqslant -x\Longleftrightarrow -x\geqslant -y$

4. Remarquons aussi que $((x \le y) \text{ et } (z \le 0)) \Longrightarrow (xz \ge xy)$

En effet, $x \leq y \iff y - x \in \mathbb{N}$ et donc, si $z \leq 0$, alors $z(y - x) \in \mathbb{Z}^- \iff z(x - y) \in \mathbb{N}$.

Comme z(x-y)=zx-zy, nous avons $zx-zy\in\mathbb{N}\Longleftrightarrow zx\geqslant zy$

4.1.19 Proposition

 \mathbb{Z} est archimédien

C'est à dire que pour tout $y\in\mathbb{Z}$ et tout $x\in\mathbb{N}^*$, il existe $n\in\mathbb{N}$ tel que nx>y

Démonstration

Soient $y \in \mathbb{Z}$ et $x \in \mathbb{N}^*$.

- \triangleright Si $y \in \mathbb{Z}^-$, alors, il n'y a pas de difficulté; il suffit de prendre n=1, et comme $y \leqslant 0$ et $x \geqslant 1$, nous avons bien $y < 1 \times x$
- \triangleright Supposons, cette fois ci $y \in \mathbb{N}^*$, c'est à dire que y est un entier strictement positif, c'est à dire y > 0

Alors, comme $x \ge 1$, nous avons $x(y+1) \ge y+1 > y$ et l'entier n = y+1 convient.

4.1.20 Sous-ensembles de \mathbb{Z}

- 1. Tout sous ensemble non vide et minoré de $\mathbb Z$ admet un élément minimum unique
- 2. Tout sous ensemble non vide et majoré de $\mathbb Z$ admet un élément maximum unique

Démonstration

1. Soit $M \subset \mathbb{Z}$ non vide et minoré. Soit $a \in \mathbb{Z}$, ce minorant.

Alors, pour tout $y \in M$, $a \leq y$. On considère l'ensemble M' défini par :

$$M' = \{x \in \mathbb{Z} \text{ tels que } x = y + a \text{ où } y \in M\}$$

Alors puisque tout $x \in M'$ est tel que $x \ge 0$, nous avons $M' \subset \mathbb{N}$, et d'après l'axiôme 2.1.2 M' est un ensemble non vid ede \mathbb{N} qui admet un plus petit élément unique appelé t.

Par construction, il existe un nombre $y_0 \in M$ tel que $t = a + y_0$ et ce plus petit élément est de manière évidente le nombre $y_0 = t - a$, et cet élément y_0 est, lui aussi unique

2. Supposons, maintenant, $M \subset \mathbb{Z}$ non vide et majoré.

Soit $b \in \mathbb{Z}$, ce majorant. Alors, pour tout $y \in M$, $b \geqslant y$

Considère maintenant l'ensemble M_1 défini par :

$$M_1 = \{x \in \mathbb{Z} \text{ tels que } x = -y \text{ où } y \in M\}$$

Alors cette fais ci, M_1 est une partie de \mathbb{Z} non vide et minorée par -b.

D'après la question précédente, M_1 admet un plus petit élément $z_1 \in M_1$, c'est à dire que pour tout $x \in M_1$, $z_1 \leqslant x \iff -x \geqslant -z_1$

Comme $-x \in M$ et $-z_1 \in M$, M admet donc un plus grand élément unique