4.4 Le ppcm, le plus petit multiple commun

4.4.1 Définition

Soient $a \in \mathbb{Z}$ et $b \in \mathbb{Z}$

On appelle plus petit multiple commun à a et à b, un entier $m \in \mathbb{Z}$ tel que la proposition suivante soit vraie :

$$(\forall c \in \mathbb{Z}) (a \mid c \quad b \mid c) \Longrightarrow (m \mid c)$$

On note m = ppcm(a, b)

4.4.2 Théorème

Pour tout $a \in \mathbb{Z}$ et tout $b \in \mathbb{Z}$, nous avons :

$$a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$$

Où $m = \operatorname{ppcm}(a, b)$

Démonstration

1. Montrons que $a\mathbb{Z} \cap b\mathbb{Z}$ est un idéal

Cette question est un cas particulier d'un énoncé plus général : voir pour cela l'exercice qui suit.

- Tout d'abord, l'intersection de 2 sous-groupes est un sous-groupe ; donc $a\mathbb{Z}\cap b\mathbb{Z}$ est un sous-groupe de \mathbb{Z}
- Soit $\lambda \in \mathbb{Z}$ et $x \in a\mathbb{Z} \cap b\mathbb{Z}$; il faut montrer que $\lambda x \in a\mathbb{Z} \cap b\mathbb{Z}$ Tout d'abord, $a\mathbb{Z}$ est un idéal et donc, $\lambda x \in a\mathbb{Z}$; de même, $\lambda x \in b\mathbb{Z}$ donc, $\lambda x \in a\mathbb{Z} \cap b\mathbb{Z}$

Nous en déduisons que $a\mathbb{Z} \cap b\mathbb{Z}$ est un idéal de \mathbb{Z}

Dans la mesure où $\mathbb Z$ est un anneau principal, cet idéal est engendré par un seul élément, appelé m; nous avons donc $a\mathbb Z\cap b\mathbb Z=m\mathbb Z$

2. Il faut maintenant montrer que m = ppcm(a, b).

Soit $x \in a\mathbb{Z} \cap b\mathbb{Z}$; alors, x est un multiple de a et un multiple de b; c'est aussi un multiple de m; donc $m \mid x$, c'est à dire, en utilisant la définition, que $m = \operatorname{ppcm}(a, b)$

Exercice 30:

Soit $(R, +, \times)$ un anneau, I et J, deux idéaux de R Montrer que $I \cap J$ est un idéal de R

Exercice corrigé

Montrez que, pour tout $a \in \mathbb{Z}$, tout $b \in \mathbb{Z}$ et tout $k \in \mathbb{Z}$, $\operatorname{ppcm}(ka, kb) = k\operatorname{ppcm}(a, b)$

On appelle $m' = \operatorname{ppcm}(ka, kb)$ et $m = \operatorname{ppcm}(a, b)$; il faut donc montrer que m' = km ou encore que:

$$(ka) \mathbb{Z} \cap (kb) \mathbb{Z} = (km) \mathbb{Z}$$

1. Montrons que $(ka) \mathbb{Z} \cap (kb) \mathbb{Z} \subset (km) \mathbb{Z}$

Soit $x \in (ka) \mathbb{Z} \cap (kb) \mathbb{Z}$. Alors :

- Il existe $\lambda \in \mathbb{Z}$ tel que $x = \lambda (ka)$
- De même, il existe $\lambda_1 \in \mathbb{Z}$ tel que $x = \lambda_1$ (kb)

Or,
$$x = \lambda(ka) = \lambda_1(kb) \iff k(\lambda a) = k(\lambda_1 b) \iff \lambda a = \lambda_1 b$$

En posant $\mu = \lambda a = \lambda_1 b$, nous montrons que μ est un multiple de a et de b et donc un multiple de $m = \operatorname{ppcm}(a, b)$. On peut donc écrire $\mu = pm$.

Donc x = k(pm) = (km) p, c'est à dire que $x \in km\mathbb{Z}$.

Donc, $(ka) \mathbb{Z} \cap (kb) \mathbb{Z} \subset (km) \mathbb{Z}$

2. Montrons que $(km) \mathbb{Z} \subset (ka) \mathbb{Z} \cap (ka) \mathbb{Z}$

Soit donc $x \in (km)\mathbb{Z}$. Alors, il existe $\lambda \in \mathbb{Z}$ tel que $x = \lambda(km)$. Or, $m = \operatorname{ppcm}(a, b)$ est donc un multiple commun à a et b et donc, il existe α et β tels que $m = \alpha a = \beta b$. Donc $x = \lambda \times k \times \alpha a = \lambda \alpha \times k a$ ce qui montre que $x \in ka\mathbb{Z}$.

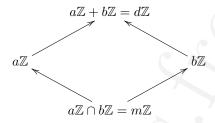
De même, $x = \lambda \times k \times \beta b = \lambda \beta \times kb$ ce qui montre que $x \in kb\mathbb{Z}$

Donc, $x \in (ka) \mathbb{Z} \cap (ka) \mathbb{Z}$, et donc $(km) \mathbb{Z} \subset (ka) \mathbb{Z} \cap (ka) \mathbb{Z}$

Ainsi, $(ka) \mathbb{Z} \cap (kb) \mathbb{Z} = (km) \mathbb{Z}$, et nous avons ppcm (ka, kb) = kppcm (a, b)

Remarque 13:

En fait, le schéma suivant montre bien les différentes inclusions (les flèches représentant les inclusions) :



4.4.3 Proposition

Soient $a \in \mathbb{Z}$ et $b \in \mathbb{Z}$; alors, les 2 propositions suivantes sont équivalentes

- **1.** m = ppcm(a, b) **et** m = a'a = b'b
- **2.** m = a'a = b'b **et** pgcd(a', b') = 1

Démonstration

1. On suppose $m = \operatorname{ppcm}(a, b)$ et m = a'a = b'b

Il faut donc montrer que pgcd (a', b') = 1

Soit δ un diviseur commun à a' et à b'

Alors, $a' = \alpha \delta$ et $b' = \beta \delta$ et donc $m = a\alpha \delta = b\beta \delta$.

Si $m' = \frac{m}{\delta} \Leftrightarrow m'\delta = m$, nous avons $m' = a\alpha = b\beta$, ce qui montre que m' est un multiple commun à a et à b, ce qui est impossible, sauf si $\delta = 1$

Donc, $\operatorname{pgcd}(a', b') = 1$

2. Réciproquement, soit m = a'a = b'b, avec pgcd (a', b') = 1

Soit $\mu = \operatorname{ppcm}(a, b)$.

De m=a'a=b'b, nous concluons que m est un multiple de a et b et donc du ppcm (a,b) qui est μ . Donc, $m=k\mu$

De cette égalité, on tire que $m=k\,(ax)=k\,(by),$ c'est à dire, que $k\,(ax)=a'a \Longleftrightarrow a'=kx$

De même, b' = ky

Ainsi, k divise donc a' et b' et donc divise $\operatorname{pgcd}(a',b')=1$, c'est à dire, k=1, et donc,

$$m = 1 \times \mu = \operatorname{ppcm}(a, b)$$

4.4.4 Théorème

- **1. Pour tout** $a \in \mathbb{Z}$ **et tout** $b \in \mathbb{Z}$ ppcm $(a,b) \times \operatorname{pgcd}(a,b) = ab$
- 2. Et, bien entendu, en corollaire, si a et b sont premiers entre eux, $\operatorname{ppcm}(a,b)=ab$

Démonstration

Soient $d = \operatorname{pgcd}(a, b)$, a' et b' deux nombres tels que a = a'd et b = b'd, avec $\operatorname{pgcd}(a', b') = 1$

On pose $m = \frac{ab}{d}$. Nous aimerions montrer que $m = \operatorname{ppcm}(a, b)$

Alors,
$$m = \frac{ab}{d} = \frac{(a'd)(b'd)}{d} = a'b'd$$
.

De cette écriture, nous déduisons m = b'a = a'b, avec pgcd (a', b') = 1

D'après la proposition 4.4.3, nous avons m = ppcm(a, b)

On conclue donc bien que md = ab, ce qui se traduit aussi par : ppcm $(a, b) \times pgcd(a, b) = ab$

Remarque 14:

L'utilisation de l'algorithme de recherche du pgcd permet de calculer aussi le ppcm

4.4.5 Lemme chinois

Soient $a \in \mathbb{N}$ et $b \in \mathbb{N}$ tels que $a \wedge b = 1$. Alors, l'équation :

$$\begin{cases} x \equiv c & [a] \\ x \equiv d & [b] \end{cases}$$

n'a qu'une seule solution modulo $\,ab\,$

Démonstration

— Comme a et b sont premiers, il existe $u \in \mathbb{Z}$ et $v \in \mathbb{Z}$ tels que au + bv = 1 et nous pouvons donc conclure que :

$$\begin{cases} au \equiv 1 & [b] \\ bv \equiv 1 & [a] \end{cases}$$

- Donc $x_0 = dau + cbv$ est une solution particulière de l'équation.
- Soit x une autre solution de cette équation. Alors :

$$\begin{cases} x - x_0 \equiv 0 & [a] \\ x - x_0 \equiv 0 & [b] \end{cases}$$

Ce qui traduit que $x - x_0$ est à la fois multiple de a et multiple de b, et donc multiple du ppcm de a et b. Comme a et b sont premiers entre eux, ppcm (a, b) = ab.

Donc $x - x_0 \equiv 0 [ab]$, c'est à dire $x \equiv x_0 [ab]$

4.4.6 Quelques exercices

Exercice 31:

Résoudre, dans \mathbb{Z} les équations :

$$\left\{ \begin{array}{l} x\equiv 3\,[11] \\ x\equiv 7\,[15] \end{array} \right. \quad \left\{ \begin{array}{l} x\equiv 4\,[10] \\ x\equiv 8\,[14] \end{array} \right.$$

Exercice 32

Soient $a \in \mathbb{Z}$ et $b \in \mathbb{Z}$. Donner $\operatorname{pgcd}(a + b, \operatorname{ppcm}(a, b))$

Exercice 33:

Déterminer l'ensemble des couples (x, y) d'entiers naturels tels que :

$$\begin{cases} \delta = 60 \\ \mu = 3600 \end{cases}$$

Où $\delta = \operatorname{pgcd}(x, y)$ et $\mu = \operatorname{pppcm}(x, y)$