Chapitre 8

Les suites numériques réelles

Que l'on se place d'un point de vue pratique ou d'un point de vue théorique, la **notion de suite est** fondamentale. Toutes les autres notions d'analyse réelle peuvent d'ailleurs s'en déduire.

Dans ce chapitre, vous trouverez beaucoup d'exercices résolus qui seront un guide pour le travail personnel.

8.1 Introduction

8.1.1 Définition

Soit E un ensemble quelconque.

On appelle suite d'éléments de E, une application f de $I \subset \mathbb{N}$ dans E

$$\begin{cases}
f: I & \xrightarrow{f} & E \\
n & \xrightarrow{f} & f(n)
\end{cases}$$

Remarque 1:

- 1. I peut être un ensemble fini ou infini.
 - Si I est un ensemble fini, la suite est dite finie.
 - Si I est un ensemble infini, la suite est dite infinie
- 2. On préfère utiliser la notation indicielle dans le cas des suites. On pose donc $f(n) = x_n$ où x_n est un élément tel que $x_n \in E$; $(x_n)_{n \in \mathbb{N}}$ représente l'application (ou la suite) f
- 3. On peut dire (et on le dit!!) que x_n est le terme d'indice n de la suite $(x_n)_{n\in\mathbb{N}}$
- 4. Si $E = \mathbb{R}$, on parle alors de suites numériques réelles, et c'est ce type de suite que nous étudions dans ce chapitre
- 5. On peut aussi remarquer que si la suite est infinie, l'ensemble des valeurs prises par la suite de terme général $u_n=(-1)^n$, $w_n=\cos\left(\frac{\pi}{6}+n\frac{\pi}{2}\right)$ sont des exemples de suites numériques infinies qui ne prennent qu'un nombre fini de valeurs
- 6. $\left(v_n = \frac{n-1}{n^2+1}\right)$ pour $1 \leqslant n \leqslant 6$ est l'exemple (trop) simple d'une suite finie

8.1.2 Comment définit-on une suite?

Il y a plusieurs façons de définir une suite :

1. Par une formule explicite, en fonction de l'entier n;

Exemples:

—
$$u_n=\sin\frac{1}{n}$$
, suite qui n'est définie que pour $n\in\mathbb{N}^*$; nous avons, en particulier, $u_1=\sin 1$, $u_2=\sin\frac{1}{2}$
— $v_n=\pi 2^{-n}$; nous avons $v_0=\pi$, $v_1=\frac{\pi}{2}$, $v_2=\frac{\pi}{4}$

2. Par une formule itérative (Formule de récurrence)

Par exemple, la suite de FIBONACCI.

(a) En TestAlgo

fin

$$\begin{cases} F_{n+2} = F_{n+1} + F_n \\ F_0 = F_1 = 1 \end{cases}$$

Le tableau suivant donne les premières valeurs de cette suite :

F_0	F_1								
1	1	2	3	5	8	13	21	34	55

Table 8.1 – Le calcul des premiers termes de la suite de Fibonacci $F_{n+2} = F_{n+1} + F_n$ avec $F_0 = F_1 = 1$

On peut utiliser un algorithme simple pour le calcul des valeurs de la suite de Fibonacci :

Algorithme donnant les termes successifs de la suite de Fibonnacci

algo Fibonnacci #Cet algorithme donne les N premiers termes d'une suite de Fibonnacci #en langage de description TestAlgo

```
principal
    var reel a, b,c;
        entier N, i;
debut
     saisir("Donner le premier terme de la suite", @a);
     saisir("Donner le second terme de la suite", @b);
     saisir("jusqu'à quel ordre souhaitez vous afficher les termes de la suite?",@N);
     i:=2;
      tantque (i<=N)</pre>
    c:=a+b;
    afficher("Le terme d'ordre "+i+" de la suite de Fibonnacci est " +c);
    alaligne();
    a:=b;
    b:=c:
    i:=i+1;
     fintantque
```

(b) Codage d'une suite de Fibonnacci en langage Python :

```
#On définit d'abord le calcul du terme d'ordre n
def fibonacci(n):
    a=b=1 #affectation typique du langage Python
        for i in range(n):
            a, b = a+b, b #Autre affectation typique du langage Python
        return b
#On imprime les termes de la suites de 1 à 120
for n in range(120):
        print (fibonacci(n))
```

3. On peut aussi définir une suite par $u_0 = a$ et $u_{n+1} = f(u_n)$ où f est une fonction numérique d'une variable réelle

Exemple : On considère la suite numérique définie par :

$$\begin{cases} u_0 = 5 \\ u_{n+1} = \frac{1}{2} \left(u_n + \frac{3}{u_n} \right) \end{cases}$$

qui est une suite numérique qui converge $\sqrt{3}$; cette suite est connue comme l'algorithme des babyloniens, qui permet d'approximer 1 la racine carrée du nombre $\sqrt{3}$. Elle est définie à partir

^{1.} Ou approcher

de la fonction : $f(x) = \frac{1}{2} \left(x + \frac{3}{x} \right) (cf figure 8.1)^2$ C'est une suite qui converge très rapidement.

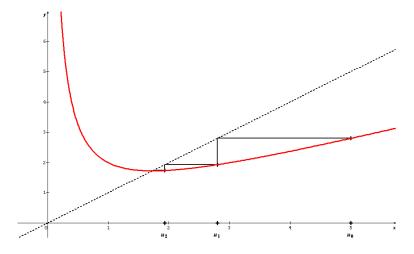


FIGURE 8.1 – La visualisation de la suite $u_{n+1} = \frac{1}{2} \left(u_n + \frac{3}{u_n} \right)$

Le tableau suivant donne les premières valeurs de la suite :

u_0	u_1	u_2	u_3	u_4	u_5	u_6
5	2,8	1,97571	1,74276	1,73208	1,73205	1,73205

Table 8.2 – Le calcul des premiers termes de la suite des babyloniens $u_{n+1} = \frac{1}{2} \left(u_n + \frac{3}{u_n} \right)$ avec $u_0 = 5$

Algorithmes donnant les termes successifs de la suite des babyloniens

```
(a) Dans le langage TestAlgo
           algo Babylonien
           #Cet algorithme recherche la racine carrée de 3 par l'algorithme des Babyloniens
           var reel a, b, epsilon;
           debut
          saisir("Donner le premier terme de la suite", @a);
          saisir("Donner l'erreur admissible",@epsilon);
          b:=effe(a);
           tantque (abs(b-a)>epsilon)
           faire
       a:=b:
       b:=effe(a);
           fintantque
          afficher("La racine de 3 à "+epsilon+" près est" +b);
   #La fonction valeur absolue n'existe pas dans test algo; elle est donc créée ici
          fonction abs(reel x): reel var
          reel c:
          debut
           si (x>=0) alors c:=x; sinon c:=-x; finsi
           retourne c;
```

2. En fait, on peut trouver une approximation de \sqrt{A} avec A>0 en utilisant la suite $U_{n+1}=\frac{1}{2}\left(U_n+\frac{A}{U_n}\right)$

#On crée ici, la fonction qui définit l'algorithme

```
fonction effe(reel x): reel var
    reel c;
    debut
    c:=1/2*(x+(3/x));
    retourne c;
fin
```

(b) Dans le langage Python

```
# Ce script définit une fonction babylon dans laquelle on insère 2 variables: # Une variable A dont on veut déterminer la racine carrée # Une variable n qui donnera lerme de rang n de la suite des babyloniens def babylon(A,n): if A <= 0:
A = A
A = \text{float}(A) \text{ #On force } A \text{ à avoir le type flottant } 
n = \text{int}(n) \text{ #On force } n \text{ à avoir le type entier } 
B = A+2 \text{ #C'est notre premier terme, totalement arbitraire plus grand que A for i in range(n): } 
B = 0.5*(B+(A/B))
return B
```

Nous obtenir comme valeurs : babylon(144, 5) = 12.11935... et babylon(144, 30) = 12.0

4. Il est aussi possible de définir les termes successifs d'une suite **par un algorithme**; c'est le cas de la célèbre **conjecture de Syracuse**

La conjecture de Syracuse est une conjecture mathématique qui reste improuvée à ce jour et qui est définie de manère suivante :

```
Soit n \in \mathbb{N}
```

Si n est pair, alors le terme suivant est obtenu en divisant n par 2

Si n est impair, alors le terme suivant est obtenu en multipliant n par 3 et on lui ajoute 1

En répétant cette procédure, la suite nombre atteint la valeur 1, puis se prolonge indéfiniment par une suite de 3 valeurs triviales, appelée « cycle trivial »

Jusqu'à présent, la conjecture de Syracuse selon laquelle, depuis n'importe quel entier positif de départ, la suite de Syracuse atteint 1, n'a pas été mise en défaut.

Programme Python, calculant les n premiers termes d'une suite de Syracuse commençant par un premier terme noté p

Calculez syracuse(1, 12) ou syracuse(12, 20)

Exercice 1:

Que pouvez vous dire de la suite définie pour tout $n \in \mathbb{N}$ par : $u_n = \frac{n}{2n+1} (1+(-1)^n)$

Résolution

Pour le moment, il est difficile d'en dire beaucoup sur cette suite. Dans un premier temps, ce qu'il nous est possible de dire, c'est ceci :

```
— Si n est impair, alors, u_n = 0
— Si n est pair, alors u_n = \frac{2n}{2n+1}
```

Il nous est possible de faire un tableau des premières valeurs : On voit donc, facilement, un comportement différent suivant que l'indice des termes est pair ou impair. On peut donc créer ainsi $2 \ll$ sous-suites \gg ou \ll suites extraites \gg :

- La sous-suite des termes de rang pair dont les termes se rapprochent de 1; elle admet +1 comme limite.
- La sous-suite des termes de rang impair, toujours nulle
- En fait, cette suite n'admet aucune limite.

n =	0	1	2	3	4	5	6	7	8	9	10
$u_n =$	0	0	$\frac{4}{5}$	0	$\frac{8}{9}$	0	$\frac{12}{13}$	0	$\frac{16}{17}$	0	$\frac{20}{21}$

Table 8.3 – Calcul des premières valeurs de la suite $u_n = \frac{n}{2n+1} (1 + (-1)^n)$

8.1.3 Définition

- 1. Une suite est dite <u>croissante</u> si, $\forall n \in \mathbb{N} \ u_{n+1} \geqslant u_n$
- 2. Une suite est dite <u>décroissante</u> si, $\forall n \in \mathbb{N} \ u_{n+1} \leqslant u_n$
- 3. Une suite est dite monotone, si elle est toujours croissante ou toujours décroissante

Exercice 2:

- 1. Que dire de la suite de terme général $u_n = \frac{10^n}{n!}$?
 - (a) Pour étudier la croissance ou la décroissance de cette suite, il est possible de faire le rapport $\frac{u_{n+1}}{u_n}$, rapport que l'on compare à 1; ici,

$$\frac{u_{n+1}}{u_n} = \frac{10^{n+1}}{(n+1)!} \times \frac{n!}{10^n} = \frac{10}{n+1}$$

Ainsi:

$$\begin{cases} \frac{10}{n+1} < 1 & \text{si } n > 9\\ \frac{10}{n+1} > 1 & \text{si } n < 9\\ \frac{10}{n+1} = 1 & \text{si } n = 9 \end{cases}$$

Ainsi, la suite $(u_n)_{n\in\mathbb{N}}$ est croissante jusque n=9, puis, $u_9=u_{10}$, et la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante à partir de n=10

(b) Bien sur qu'il est aussi possible de faire la différence entre 2 termes consécutifs : $u_{n+1}-u_n$

$$\begin{cases} u_{n+1} - u_n &= \frac{10^{n+1}}{(n+1)!} - \frac{10^n}{n!} \\ &= \frac{10^n}{n!} \left(\frac{10}{n+1} - 1 \right) \\ &= \frac{10^n}{n!} \left(\frac{10 - (n+1)}{n+1} \right) \\ &= \frac{10^n}{n!} \left(\frac{9 - n}{n+1} \right) \end{cases}$$

On retrouve donc $u_{n+1} - u_n > 0 \iff n < 9$ et $u_{n+1} - u_n < 0 \iff n > 9$ et $u_9 = u_{10}$

0	1	2	3	4	5	6	7	8	9	10	11	12
1	10	50	$166,\!67$	416,67	833,34	1388,88	1984,13	2480,16	$2755,\!32$	2755,32	$2505,\!21$	2087.67

Table 8.4 – Le calcul des douze premiers termes de la suite $\frac{10^n}{n!}$

2. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_n=\frac{n^n}{n!}$; étudier la croissance ou la décroissance de cette suite.

Correction de l'exercice

Commençons par faire le rapport $\frac{u_{n+1}}{u_n}$. Nous avons donc :

$$\frac{u_{n+1}}{u_n} = \frac{(n+1)^{n+1}}{(n+1)!} \times \frac{n!}{n^n}$$

Après simplification :

$$\frac{u_{n+1}}{u_n} = \frac{(n+1)^n}{n^n} = \left(1 + \frac{1}{n}\right)^n > 1$$

Donc, $u_{n+1} > u_n$, et la suite $(u_n)_{n \in \mathbb{N}}$ est donc strictement croissante

3. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_{n+1}=-u_n^2+u_n$; étudier la croissance ou la décroissance de cette suite

C'est très simple : pour tout $n \in \mathbb{N}$, nous avons : $u_{n+1} - u_n = -u_n^2 \le 0$. Donc, $u_{n+1} \le u_n$ et la suite est bien décroissante