7.5 Fonctions continues sur un intervalle

<u>Attention</u> La notion d'intervalle est prise au sens large : ouvert, fermé, même \mathbb{R} peut être pris comme un intervalle.

7.5.1 Définition

Soit f une fonction numérique définie sur \mathcal{D}_f , et soit $I\subset \mathcal{D}_f$ On dit que f est continue sur I, si et seulement si $(\forall x_0\in I)$ f est continue en x_0

Exemple 6:

Voici des exemples et contre-exemples :

- 1. $\tan x$ est continue sur $\left] -\frac{\pi}{2}; +\frac{\pi}{2} \right[$
- 2. [x] est continue sur]0,1[, mais pas sur [0,1] (Attention aux bornes)
- 3. $\frac{1}{x}$ n'est pas continue sur [-1;+1]; en effet, $\frac{1}{x}$ n'est pas définie en 0.

7.5.2 Théorème

Soient $f:\mathcal{D}_f\to\mathbb{R}$ et $g:\mathcal{D}_g\to\mathbb{R}$ deux fonctions numériques d'une variable réelle continues sur $\mathcal{U}\subset (\mathcal{D}_f\cap\mathcal{D}_g)$. Alors :

- 1. Somme de fonctions continues : f+g est continue sur \mathcal{U}
- 2. Produit de fonctions continues : $f \times g$ est continue sur \mathcal{U}
- 3. Produit par un scalaire : $(\forall \lambda \in \mathbb{R}) \ \lambda \times f$ est continue sur \mathcal{U}
- 4. Quotient de fonctions continues : Si $g\left(x\right)\neq0$, pour tout $x\in\mathcal{U}$, $\frac{f}{g}$ est continue en \mathcal{U}

<u>Démonstration</u>

Ce résultat est directement issu des théorèmes d'opérations sur les limites et sur les fonctions continues en un point.

7.5.3 Définition

Voici un retour à des définitions vues en mathématiques discrètes (cf 1.12.2)

1. Soit $A\subset\mathbb{R}$ et $f:\mathbb{R}\to\mathbb{R}$ on appelle image directe de A par f, l'ensemble

$$f(A) = \{y \in \mathbb{R}/y = f(x) \text{ où } x \in A\}$$

2. Soit $A \subset \mathbb{R}$ et $f: \mathbb{R} \to \mathbb{R}$ on appelle image réciproque de A par f, l'ensemble

$$f^{-1}(A) = \{x \in \mathbb{R}/f(x) \in A\}$$

7.5.4 Théorème [Admis]

Soit $f: \mathcal{D}_f \to \mathbb{R}$, une fonction continue sur $\mathcal{U} \subset \mathcal{D}_f$. Soit $I \subset \mathcal{U}$ un intervalle; alors, f(I) est aussi un intervalle.

Remarque 8:

- 1. Par construction, f est surjective de I dans f(I)
- 2. Soient $y \in f(I)$ et $y' \in f(I)$; d'après le théorème ci-dessus, f(I) étant un intervalle $[y, y'] \subset f(I)$; donc, pour tout $z \in [y \ y']$, il existe $u \in I$ tel que f(u) = z

Exemple 7:

On considère $f(x) = \sin x$, continue sur \mathbb{R} , donc

- Si $I = \mathbb{R}$, alors f(I) = [-1; +1]
- Si $I = [0, 2\pi[$, alors f(I) = [-1; +1]
- Si $I = [-2\pi, 2\pi]$, alors f(I) = [-1; +1]
- Si $I = \int_{0}^{\pi} 2\pi i \int_{0}^{\pi} \sin f(I) = [1, 1]$ Si $I = \int_{0}^{\pi} 0 + \frac{\pi}{2} [\pi \cdot \sin f(I)] = [0; +1]$ Si $I = [0, +\pi], \text{ alors } f(I) = [0; +1]$
- Si $I =]0, +\pi[$, alors f(I) =]0; +1]

On voit, d'après l'exemple ci-dessus, que f(I), image directe de I par f n'est pas forcément de la même nature que I (ouvert ou fermé), mais, c'est un intervalle

Exercice 15:

Soit f une fonction numérique, et A un sous-ensemble de \mathbb{R} . On note f(A) l'image directe de A (c.f.7.5.3). Déterminez f(A) dans les cas suivants :

- 1. $f(x) = x^2$
 - (a) A =]-1, 2[

Question classique!! f(A) = [0; 4]

(b) $A =]-3; -1] \cup [2, 4[$

$$f(A) = [1; 16]$$

2. f(x) = [x]

La fonction étudiée ici est la partie entière

(a) A = [-5, 3]

$$f(A) = \{-5, -4, -3, -2, -1, 0, 1, 2, 3\}$$

(b) $A = \mathbb{R}^{\star +}$

$$f(A) = \mathbb{N}$$

3.
$$f(x) = x - [x]$$

Il faut remarquer que, pour tout $x \in \mathbb{R}$, nous avons : $[x] \le x < [x] + 1$. Donc, en soustrayant [x] à chaque membre de l'égalité, nous obtenons : $0 \le x - [x] < 1$, et ce, pour tout $x \in \mathbb{R}$

(a) $A = \left[\frac{2}{3}, \frac{5}{3}\right]$

$$f(A) = [0; 1[$$

(b) $A = \mathbb{R}$

$$f(A) = [0; 1]$$

- (c) Pour $\lambda \in [0; 1]$ trouver $x \in \mathbb{R}$ tel que $f(x) = \lambda$
- 4. $f(x) = x^2 3x + 2$

Nous devons remarquer que f est décroissante sur $\left]-\infty\;;\;\frac{3}{2}\right]$, puis croissante sur $\left[\frac{3}{2}\;;\;+\infty\right[$.

Le minimum est donc atteint en $f\left(\frac{3}{2}\right) = -\frac{1}{4}$

(a) A = [1, 2]

$$f(A) = \left[-\frac{1}{4} ; 0 \right]$$
(b) $A = [1, 2[$

$$f(A) = \left[-\frac{1}{4} ; 0 \right]$$
(c) $A = \left] -\infty; \frac{3}{2} \right[$

$$f(A) = \left[-\frac{1}{4} ; +\infty \right]$$

7.5.5 Théorème de la valeur intermédiaire [Admis et important]

Soit f une fonction continue sur $\mathcal{U}\subset\mathcal{D}_f$. Soit $[a,b]\subset\mathcal{U}$. On dit que [a,b] est un segment ou un compact de \mathbb{R}

- Alors,
 - 1. f est bornée et atteint ses bornes
 - **2.** Pour tout $\lambda \in f([a,b])$, il existe $c \in [a,b]$ tel que $f(c) = \lambda$

Remarque 9:

Qu'est ce que « bornée et atteint ses bornes » veut dire?

Bornée veut dire que f([a,b]) = [m,M]

Atteint ses bornes veut dire qu'il existe $x_0 \in [a, b]$ tel que $f(x_0) = m$ et qu'il existe $x_1 \in [a, b]$ tel que $f(x_1) = M$

Exemple 8:

Soit $f(x) = x^2$ et I = [0, 2]; alors, f(I) = [0, 4] et il existe $c \in [0, 2]$ tel que f(c) = 1 et la borne supérieure 4 est atteinte en x = 2

Exercice 16:

On donne la fonction $f(x) = |x^2 - 2x|$, définie sur l'intervalle [0;3] et dont le graphe est donné par la figure 7.10

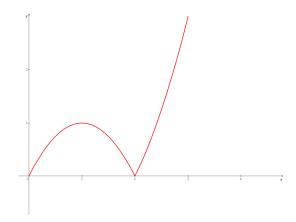


FIGURE 7.10 – Graphe de la fonction $f(x) = |x^2 - 2x|$

1. Démontrer qu'elle est strictement croissante sur [0;1], strictement décroissante sur [1;2] et strictement croissante sur [2;3]

On regarde ces expressions en enlevant les valeurs absolues.

- Si $x \le 0$ et si $x \ge 2$, alors $x^2 2x \ge 0$ et $|x^2 2x| = x^2 2x$. On en déduit donc que si $x \ge 2$, $x^2 2x$ et donc $|x^2 2x|$ est croissante.
 - La fonction f(x) est donc strictement croissante sur [2, 3]
- Maintenant, Si $0 \le x \le 2$, $x^2 2x \le 0$ et $|x^2 2x| = -x^2 + 2x$. On en déduit donc que si $0 \le x \le 2$, $-x^2 + 2x$ et donc $|x^2 2x|$ est strictement croissante sur [0;1] et strictement décroissante sur [1;2]
 - La fonction f(x) est donc strictement croissante sur [0;1], strictement décroissante sur [1;2]
- 2. Calculez f(0) et f(3). Soit λ un nombre compris entre f(0) et f(3); combien existe-t-il de nombres c tels que $f(c) = \lambda$? Discuter suivant les valeurs de λ

Evidemment, f(0) = 0 et f(3) = 3

La discussion peut se faire de manière géométrique :

- Si $\lambda = 0$, il n'y a que 2 solutions à l'équation $f(c) = \lambda$; ce sont c = 0 et c = 2
- Si $0 < \lambda < +$, il y a 3 solutions à l'équation $f(c) = \lambda$.
- Si $\lambda = 1$, il n'y a que 2 solutions à l'équation $f(c) = \lambda$; ce sont c = 1 et 2 < c < 3
- Si $\lambda > 1$, il n'y a qu'une solution à l'équation $f(c) = \lambda$ où nous avons 2 < c < 3

7.5.6 Application à la résolution d'équations : existence d'une solution

Soit f une fonction continue sur un segment [a,b] tel que $f(a) \times f(b) < 0$ Alors, l'équation f(x) = 0 a au moins une solution dans [a,b]

Démonstration

Pour simplifier, supposons f(a) < 0 et f(b) > 0; d'après les résultats précédents, f([a,b]) est un segment tel que $f(a) \in f([a,b])$ et $f(b) \in f([a,b])$, et donc $[f(a) f(b)] \subset f([a,b])$ Or, $0 \in [f(a) f(b)]$, et donc $0 \in f([a,b])$. Il existe donc $c \in [a,b]$ tel que f(c) = 0, et $c \in [a,b]$, car $f(a) \times f(b) \neq 0$

Exemple 9:

1. Soit f(x) = (4x - 5)(x - 1)(4x - 3); les calculs de f(0) = -15 et de f(2) = 15 montrent qu'il existe $c \in [0; 2[$ tel que f(c) = 0

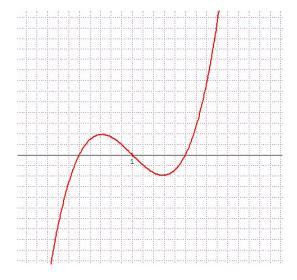


FIGURE 7.11 – Graphe de la fonction f(x) = (4x - 5)(x - 1)(4x - 3)

- 2. Soit $g(x) = (x-3)(x^2-1)$; le calcul de g(0) = 3 et de g(2) = -3 montrent qu'il existe $c \in]0; 2[$ tel que g(c) = 0; en fait, il y en a 3
- 3. Se pose donc le problème de l'unicité des solutions.

7.6 Fonctions monotones sur un intervalle

7.6.1 Rappels

1. On dit qu'une fonction f est strictement croissante sur I, si, pour tout $(x,y) \in I \times I$ nous avons l'implication

$$x < y \Rightarrow f(x) < f(y)$$

2. On dit qu'une fonction f est strictement décroissante sur I, si, pour tout $(x,y) \in I \times I$ nous avons l'implication

$$x < y \Rightarrow f(x) > f(y)$$

7.6.2 Proposition

Soit f une fonction numérique d'une variable réelle. Si f est strictement monotone sur I alors f est injective de I dans $f\left(I\right)$

Démonstration

Nous allons utiliser la définition de fonction injective :

$$f$$
 est injective \iff $(\forall x \in I) (\forall y \in I) (x \neq y \implies f(x) \neq f(y))$

Soit f strictement monotone; supposons f strictement croissante.

Soit $x \neq y$. Alors, de deux choses l'une : ou bien x < y ou bien y < x.

Si x < y, alors f(x) < f(y) donc $f(x) \neq f(y)$

Nous aurions la même démonstration si y < x. Donc, si f est strictement croissante, f est injective.

De même, on démontrerait que si f est strictement décroissante, alors f est injective.

Ce que nous voulions démontrer.

7.6.3 Théorème

Soit f une fonction numérique d'une variable réelle définie sur \mathcal{D}_f . Soit $I\subset \mathcal{D}_f$ et on suppose f continue et strictement monotone sur I.

Alors, f est une bijection de I sur f(I)

Démonstration

Le fait que f soit strictement monotone assure l'injectivité de f; de plus, f est surjective de I dans f(I); donc f est bijective.

7.6.4 Application à la résolution d'équation

Soit f une fonction numérique d'une variable réelle définie sur \mathcal{D}_f . Soit $[a;b]\subset \mathcal{D}_f$ et on suppose f continue et strictement monotone sur [a;b] et telle que f $(a)\times f$ (b)<0 Alors, l'équation f (x)=0 n'a qu'une seule solution dans [a;b]