11.6 Dérivée d'ordre supérieur

11.6.1 Définition

- 1. On appelle $f^{(0)}$ la dérivée d'ordre 0 de f, c'est à dire $f^{(0)}=f$
- 2. Si $n \ge 1$, la dérivée n-ième de f est définie par récurrence, par :

$$f^{(n)} = \left(f^{(n-1)}\right)'$$

3. On note aussi, parfois, $f^{(n)}\left(x\right)=\dfrac{\mathrm{d}^{n}}{\mathrm{d}x^{n}}\left(f\left(x\right)\right)$

Exemple 8:

1. Calcul des dérivées successives, jusqu'à l'ordre 5, de $f(x) = -7x^2 + 8x + 2$

Bien entendu, comme c'est un polynôme, c'est très simple :

Dérivée première f'(x) = -14x + 8

Dérivée seconde $f^{(2)}(x) = -14$

Dérivée troisième $f^{(3)}(x) = 0$

Et, bien entendu, pour $k \ge 4, f^{(k)}(x) = 0$

2. Examiner les dérivées successives de $\sin x$

Dérivée première $f'(x) = \cos x = \sin \left(x + \frac{\pi}{2}\right)$

Dérivée seconde $f^{(2)}(x) = -\sin x = \sin(x+\pi) = \sin\left(x+2\frac{\pi}{2}\right)$

Dérivée troisième $f^{(3)}(x) = -\cos x = \sin\left(x + 3\frac{\pi}{2}\right)$

Et, ceci se démontre très facilement par récurrence sur k, pour $k \in \mathbb{N}$

$$\sin^{(k)}(x) = \sin\left(x + k\frac{\pi}{2}\right)$$

3. De la même manière, les dérivées successives de $\cos x$ sont données, pour tout $k \in \mathbb{N}$,

$$\cos^{(k)}(x) = \cos\left(x + k\frac{\pi}{2}\right)$$

4. Pour tout $n \in \mathbb{N}$, on pose $f_n(x) = (x-a)^n$, quelles sont les dérivées successives de f_n ?

Dérivée première
$$f'_n(x) = n(x-a)^{n-1} = \frac{n!}{(n-1)!}(x-a)^{n-1}$$

Dérivée seconde
$$f_n^{(2)}(x) = n(n-1)(x-a)^{n-2} = \frac{n!}{(n-2)!}(x-a)^{n-2}$$

Dérivée troisième
$$f_n^{(3)}(x) = n(n-1)(n-2)(x-a)^{n-3} = \frac{n!}{(n-3)!}(x-a)^{n-3}$$

Rappelons que le nombre d'arrangements de k éléments pris parmi n est donné par : $\mathbf{A}_n^k = \frac{n!}{(n-k)!}.$

Nous pouvons donc démontrer très facilement par récurrence sur k, pour $k \in \mathbb{N}$,

$$f_n^{(k)}(x) = A_n^k (x - a)^{n-k}$$

On montre, en particulier, que si $k>n,\,f_{n}^{(k)}\left(x\right)=0$

11.6.2 Fonctions de classe C^n et de classe C^{∞}

Soit f une fonction définie sur un domaine $\mathcal{D}_f \subset \mathbb{R}$ et soit $\mathcal{U} \subset \mathcal{D}_f$

- 1. f est continuement dérivable sur \mathcal{U} si f est dérivable sur \mathcal{U} et si f' est continue sur \mathcal{U}
- 2. Fonctions de classe C^n On dit que f est une fonction de classe C^n sur $\mathcal U$ si et seulement si $f^{(n)}$ est définie (i.e. f est n fois dérivable)et la fonction $f^{(n)}$ est continue sur $\mathcal U$
- 3. Fonctions de classe \mathcal{C}^{∞} On dit que f est une fonction de classe \mathcal{C}^{∞} sur \mathcal{U} si et seulement si pour tout $n \in \mathbb{N}$, $f^{(n)}$ est définie (i.e. f est n fois dérivable) et la fonction $f^{(n)}$ est continue sur \mathcal{U}

Remarque 12:

- 1. On dit souvent que f est de classe \mathcal{C}^0 si f est simplement continue
- 2. Si f est de classe \mathcal{C}^n sur \mathcal{U} , alors, pour tout $k \in \mathbb{N}$ avec $0 \leqslant k \leqslant n$, f est de classe \mathcal{C}^k sur \mathcal{U}

Exemple 9:

- 1. Si f est le rapport de 2 polynômes, définis sur I, alors, f est de classe \mathcal{C}^{∞} sur I
- 2. Pour $n \in \mathbb{N}^*$ et $f(x) = \frac{1}{(x-a)^n}$, alors, f est de classe \mathcal{C}^{∞} sur $\mathbb{R} \{a\}$, et pour tout $k \in \mathbb{N}$,

$$f^{(k)}(x) = (-1)^k \frac{(n+k-1)!}{(n-1)!} \times \frac{1}{(x-a)^{n+k}}$$

Exercice 20:

- 1. Calculez les dérivées *n-ièmes* de x^{α} où $\alpha \in \mathbb{R}$ et $x \in \mathbb{R}^{*+}$
- 2. Calculez les dérivées n-ièmes de a^x où $x \in \mathbb{R}$ et a > 0
- 3. Rechercher les dérivées n-ièmes de $\log_a(x)$