11.7 Dérivée de la fonction réciproque

11.7.1 Théorème

Soit f une fonction définie sur un domaine $\mathcal{D}_f \subset \mathbb{R}$ et soit $\mathcal{U} \subset \mathcal{D}_f$.

On suppose f continue et strictement monotone sur \mathcal{U} , et donc bijective sur \mathcal{U} ; alors

1. Si f est dérivable en $x_0 \in \mathcal{U}$ et est telle que $f^{'}(x_0) \neq 0$, alors, f^{-1} est dérivable en $y_0 \in f(\mathcal{U})$ tel que $y_0 = f(x_0)$, et nous avons :

$$f(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f' \circ f^{-1}(y_0)}$$

2. Si f est partout dérivable sur $\mathcal U$ et si f' ne s'annule jamais sur $\mathcal U$, alors f^{-1} est partout dérivable sur $f(\mathcal U)$, et

$$\boxed{\left(f^{-1}\right)' = \frac{1}{f' \circ f^{-1}}}$$

Démonstration

Pour $y \in f(\mathcal{U})$ et $y_0 \in f(\mathcal{U})$ avec $y \neq y_0$, on pose

$$\tau(y, y_0) = \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0}$$

 $\tau\left(y,y_{0}\right)$ est le taux de variations de f^{-1} entre y et $y_{0}.$

f étant une bijection, il existe un unique élément $x \in \mathcal{U}$ et un unique élément $x_0 \in \mathcal{U}$ tels que y = f(x) et $y_0 = f(x_0)$, ce qui est équivalent à : f(y) = x et $f(y_0) = x_0$, et donc, $\tau(y, y_0)$ devient

$$\tau\left(y, y_{0}\right) = \frac{x - x_{0}}{f\left(x\right) - f\left(x_{0}\right)}$$

Donc, par la continuité de f et g :

$$\lim_{y \to y_0} \tau(y, y_0) = \lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{f'(x_0)}$$

On retrouve donc f^{-1} dérivable et, $\left(f^{-1}\right)^{'}=\frac{1}{f^{'}\circ f^{-1}}$

Remarque 13:

Si $f'(x_0) = 0$, f^{-1} n'est pas dérivable en y_0 , mais la courbe représentative de f^{-1} admet, au point $M_0(y_0, f(y_0))$ une tangente parallèle à $(y'\mathcal{O}, y)$

Exemple 10:

La dérivée de la fonction exponentielle

La fonction exponentielle exp $x = e^x$ est la fonction réciproque de la fonction $\ln x$, donc,

$$(\exp x)' = \frac{1}{(\ln)' \circ \exp(x)} = \frac{1}{(\ln)' (\exp(x))}$$

Comme $(\ln)' x = \frac{1}{x}$, nous avons :

$$(\exp x)' = \frac{1}{(\ln)'(\exp(x))} = \frac{1}{\frac{1}{\exp x}} = \exp x$$

On a donc, ce qu'on connaît : $(e^x)' = e^x$

Exercice 21:

Calculer la dérivée de $e^{u(x)}$ où u est une fonction dérivable.