11.8 Seconde liste d'exercices

Indéterminations et rapport de dérivation 11.8.1

Exercice 22:

L'objet de cet exercice est d'utiliser le rapport de dérivation pour lever des indéterminations; c'est aussi l'outil utilisé pour donner les limites remarquables.

1.
$$\lim_{x \to e} \frac{\sqrt{x} - \sqrt{e}}{\ln x - 1}$$

2.
$$\lim_{x\to 0} \frac{a^x - b^x}{c^x - d^x}$$
 avec $c \neq d$

2.
$$\lim_{x \to 0} \frac{a^x - b^x}{c^x - d^x}$$
 avec $c \neq d$ 3. $\lim_{x \to 0} \frac{(1+x)^n - 1}{kx}$ où $k \neq 0$

11.8.2 Dérivées successives

Exercice 23:

On pose $f(x) = xe^x$

- 1. Calculer f'(x); f''(x); $f^{(3)}(x)$ et $f^{(4)}(x)$.
- 2. Conjecturer l'expression de $f^{(n)}(x)$.
- 3. Etablir à l'aide d'un raisonnement par récurrence le résultat de la question précédente.

Exercice 24:

On pose $f(x) = x \sin(x)$

- 1. Calculer f'(x) = f''(x); $f^{(3)}(x)$ et $f^{(4)}(x)$.
- 2. Conjecturer l'expression de $f^{(n)}(x)$.
- 3. Etablir à l'aide d'un raisonnement par récurrence le résultat de la question précédente.

Exercices de prolongement 11.8.3

Exercice 25:

Soit \mathcal{P} le plan euclidien muni d'un repère $(O; \vec{i}; \vec{j})$ orthonormé. Pour un point A et une droite \mathcal{D} donnés du plan, on définit la distance de A à \mathcal{D} par $d(A; \mathcal{D}) = \inf_{M \in \mathcal{D}} AM$.

- 1. On pose A(1,2) et $\mathcal{D}: y=2x+3$. Calculer $d(A;\mathcal{D})$.
- 2. On pose $A(x_0; y_0)$ et $\mathcal{D}: y = ax + b$. Calculer $d(A; \mathcal{D})$

Exercice 26:

Soit
$$n \in \mathbb{N}$$
, on pose :
$$\begin{cases} f_n : [0;1] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & f_n(x) = e^{-x} \left(1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} \right) \end{cases}$$

- 1. Calculer $f'_n(x)$, puis trouver un encadrement de f'_n sur [0;1].
- 2. Montrer que $-\frac{1}{(n+1)!} \le e^{-1} \left(1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \right) 1 \le 0.$
- 3. Calcular $\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{k!}$.

Exercice 27:

Dérivée centrale

Soit $a \in \mathbb{R}$ et f une fonction numérique définie sur un intervalle de la forme $I = [a - \varepsilon; a + \varepsilon]$, où $\varepsilon > 0$. On appelle <u>dérivée centrale de</u> f en a, le nombre $f_c(a) = \lim_{\substack{h \to 0 \\ h > 0}} \frac{f(a+h) - f(a-h)}{2h}$ si cette limite existe.

1. Montrer que si f est dérivable en a, alors elle admet une dérivée centrale en a

- 2. N'est-il pas possible de donner une condition plus faible?
- 3. Avons-nous la réciproque? (c'est à dire que si f admet une dérivée centrale en a, est-elle dérivable en a? Etudier, par exemple, |x| au voisinage de 0

Exercice 28:

Résoudre dans \mathbb{R} l'équation $\sqrt{\cos x} + \sqrt{\sin x} = 1$

Exercice 29:

1. Montrer que, pour tout $x \in \mathbb{R}$,

$$\sqrt{2} \leqslant \cos x + \sin x \leqslant \sqrt{2} \text{ et } -\sqrt{2} \leqslant -\cos x + \sin x \leqslant \sqrt{2}$$

2. Pour $t \in \mathbb{R}$, on considère la fonction $f_t(x) = \cos tx + \sin tx$; montrer que si $|t| < \frac{1}{\sqrt{2}}$, alors l'équation $f_t(x) = x$ admet une unique solution

Exercice 30:

Soit $\mu \in \mathbb{R}$ tel que $\mu \geqslant 1$

1. En étudiant les variations de la fonction $\varphi(x) = \frac{1+x^{\mu}}{\left(1+x\right)^{\mu}}$ définie pour $x \in [0;1]$, démontrer que, pour tout $x \in [0;1]$

$$2^{1-\mu} \leqslant \frac{1+x^{\mu}}{(1+x)^{\mu}} \leqslant 1$$

2. De même, montrer que, pour tout $x \in [0; 1[$

$$\frac{1 - x^{\mu}}{\left(1 - x\right)^{\mu}} \geqslant 1$$