

Figure 16.5 – Visualisation de l'exercice

16.5 Espaces affines euclidiens

16.5.1 Définition

On dit qu'un espace affine $\mathcal{E}=\{\mathcal{E},E,\Theta\}$ est <u>euclidien</u> si sa direction E est un \mathbb{R} -espace vectoriel euclidien

Remarque 12:

- 1. Il y a donc possibilité d'utiliser le produit scalaire dans \mathcal{E} euclidien en écrivant $\langle \overrightarrow{AB}/\overrightarrow{AC} \rangle$.
- 2. On peut aussi utiliser les normes de vecteur $\|\overrightarrow{AB}\| = \sqrt{\langle \overrightarrow{AB}/\overrightarrow{AB}\rangle}$
- 3. Si \mathcal{E} est un espace affine euclidien de dimension 3, on peut aussi utiliser des <u>repères orthonormés</u> $\mathcal{R}(O,i,j,k)$ où $\{i,j,k\}$ est une base orthonormée du \mathbb{R} -espace vectoriel euclidien E. La généralisation dans un espace affine \mathcal{E} de dimension n est évidente.

Exercice 19:

Nous nous situons dans le plan affine euclidien \mathcal{P} dans lequel nous avons mis un repère orthonormé $\mathcal{R}\left(O,i,j\right)$

- 1. Soit $A \in \mathcal{P}$ un point de coordonnées A(1,1) et $u \in P$ de coordonnées $u \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ Etudier l'ensemble $X = \left\{ M \in \mathcal{P} \text{ tels que } \left\langle \overrightarrow{AM} / u \right\rangle = 0 \right\}$
- 2. Qu'en est-il de l'ensemble $X_k=\left\{M\in\mathcal{P} \text{ tels que } \left\langle\overrightarrow{AM}/u\right\rangle=k\right\}$ où $k\in\mathbb{R}$

Remarque 13:

Très généralement, toute droite d'équation cartésienne ax + by + c = 0 admet comme vecteur normal, le vecteur $u = \begin{pmatrix} a \\ b \end{pmatrix}$

Une droite peut être définie par un vecteur normal et un point par où passe cette droite

Exercice 20:

Dans l'espace affine euclidien \mathcal{E} de dimension 3 dans lequel nous avons mis un repère orthonormé $\mathcal{R}\left(O,i,j,k\right)$

Soit $A \in \mathcal{E}$ un point de coordonnées A(1,1,1) et $u \in E$ de coordonnées $u \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ Etudier l'ensemble $Y_k = \left\{ M \in \mathcal{E} \text{ tels que } \left\langle \overrightarrow{AM} / u \right\rangle = k \right\}$ où $k \in \mathbb{R}$

Remarque 14:

Très généralement, tout plan de \mathcal{E} d'équation cartésienne ax + by + cz + d = 0 admet comme vecteur normal, le vecteur $\overrightarrow{n} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$

Une droite peut être définie par un vecteur normal et un point par où passe cette droite

16.5.2 Distance

Soit \mathcal{E} un espace affine euclidien. On peut définir, sur \mathcal{E} , une distance par :

$$(\forall M \in \mathcal{E}) (\forall N \in \mathcal{E}) \left(d (MN) = MN = \left\| \overrightarrow{MN} \right\| \right)$$

Cette distance vérifie les 3 axiômes :

- **1.** $(\forall M \in \mathcal{E}) (\forall N \in \mathcal{E})$, (d(MN) = d(NM))
- **2.** $(\forall M \in \mathcal{E}) (\forall N \in \mathcal{E})$, $(d(MN) = 0 \iff M = N)$
- 3. Inégalité triangulaire : $(\forall M \in \mathcal{E}) (\forall N \in \mathcal{E}) (\forall X \in \mathcal{E}) (d(MN) \leqslant d(MX) + d(XN))$

Remarque 15:

Comment ces distances peuvent-elles s'exprimer analytiquement?

1. Dans le plan euclidien, rapporté à un repère orthonormé $\mathcal{R}\left(O,i,j\right)$, soient $M\left(x,y\right)$ et $N\left(x_{1},y_{1}\right)$. Alors, $\overrightarrow{MN}=\begin{pmatrix}x_{1}-x\\y_{1}-y\end{pmatrix}$ et :

$$MN = \|\overrightarrow{MN}\| = \sqrt{(x - x_1)^2 + (y - y_1)^2}$$

2. Dans l'espace euclidien \mathcal{E} de dimension 3, rapporté à un repère orthonormé $\mathcal{R}(O,i,j,k)$, soient M(x,y,z) et $N(x_1,y_1,z_1)$. Alors, $\overrightarrow{MN} = \begin{pmatrix} x_1 - x \\ y_1 - y \end{pmatrix}$ et :

$$M(x, y, z)$$
 et $N(x_1, y_1, z_1)$. Alors, $\overrightarrow{MN} = \begin{pmatrix} x_1 - x \\ y_1 - y \\ z_1 - z \end{pmatrix}$ et :

$$MN = \|\overrightarrow{MN}\| = \sqrt{(x - x_1)^2 + (y - y_1)^2 + (z - z_1)^2}$$

Exercice 21:

Soit \mathcal{E} un espace affine euclidien et ABC un triangle (c'est à dire, trois points non alignés de \mathcal{E}). Montrez que :

$$BC^{2} = AB^{2} + AC^{2} - 2\left\langle \overrightarrow{AB} / \overrightarrow{AC} \right\rangle$$

Quel résultat retrouve-t-on lorsque le triangle est rectangle en A?

Exercice 22:

Soit \mathcal{E} un espace affine euclidien et ABCD un parallélogramme de \mathcal{E} . Montrez la formule :

$$AC^2 - BD^2 = 4 \left\langle \overrightarrow{AB} / \overrightarrow{BC} \right\rangle$$

Exercice 23:

Soit \mathcal{E} un espace affine euclidien de dimension 3 muni d'un repère othonormé $\mathcal{R}\left(O,i,j,k\right)$ La droite D est définie par les 2 plans P et P_1 :

$$\begin{cases} P: & 2x - 3y - 2z + 4 = 0 \\ P_1: & x + 2y - 2z - 5 = 0 \end{cases}$$

Montrer que les plans P et P_1 sont perpendiculaires

Exercice 24:

Soit \mathcal{E} un espace affine euclidien de dimension 3 muni d'un repère othonormé $\mathcal{R}\left(O,i,j,k\right)$ On considère les deux droites D et D_1 :

$$D: \quad \left\{ \begin{array}{l} x-y=1 \\ 2y+z=3 \end{array} \right. \qquad D_1: \quad \left\{ \begin{array}{l} x+y+z=0 \\ 3x-y=2 \end{array} \right.$$

- 1. Donner un vecteur directeur \overrightarrow{u} de D et un vecteur directeur \overrightarrow{v} de D_1
- 2. En déduire un vecteur \overrightarrow{w} de leur perpendiculaire commune Δ

Exercice 25:

Soit \mathcal{E} un espace affine euclidien de dimension 3. Soit \overrightarrow{u} un vecteur de E de norme 1 et $A \in \mathcal{E}$. On définit un plan H par :

$$H = \left\{ M \in \mathcal{E} \text{ tels que } \left\langle \overrightarrow{AM} / \overrightarrow{u} \right\rangle = 0 \right\}$$

Nous définissons un repère orthonormé $\mathcal{R}\left(A,i,j,\overrightarrow{u}\right)$

- 1. Montrer que $M \in H$ si et seulement si M a pour coordonnées M(x,y,0) avec $x \in \mathbb{R}$ et $y \in \mathbb{R}$
- 2. Calculer, pour tout $N \in \mathcal{E}$, le produit scalaire $\langle \overrightarrow{AN} / \overrightarrow{u} \rangle$
- 3. En déduire que l'application f définie par :

$$\left\{ \begin{array}{ccc} f:\mathcal{E} & \longrightarrow & \mathbb{R} \\ N & \longmapsto & f\left(N\right) = \left\langle \overrightarrow{AN}/\overrightarrow{u}\right\rangle \end{array} \right.$$

permet de définir 2 demi-espaces dont H est la frontière.

Exercice 26:

- 1. Soit \mathcal{E} un espace affine euclidien de dimension quelconque.
 - (a) Etant donnés 3 points A, B et M de \mathcal{E} , montrer que l'une quelconque des égalités suivantes entraı̂ne l'alignement des 3 points A, B et M de \mathcal{E}

$$\star AB = AM + MB$$
 $\star AB = AM - MB$ $\star AB = MB - AM$

(b) Montrer l'inégalité suivante, vraie pour 3 points quelconques A, M et B

$$|MA - MB| \leqslant AB$$

2. Nous nous situons maintenant, dans le plan affine euclidien \mathcal{P} A et B sont 2 points distincts du plan \mathcal{P} et $k \in \mathbb{R}^{*+}$. On appelle \mathcal{C}_k , l'ensemble des points $M \in \mathcal{P}$ tels que $\frac{MA}{MB} = k$ Etudier \mathcal{C}_k en fonction des valeurs de k