Chapitre 18

Orientation de l'espace Produit vectoriel

18.1 Orientation de l'espace

18.1.1 Définition et théorème

Soit E un \mathbb{R} -espace vectoriel eucliedien de dimension 3 et \mathcal{B} l'ensemble des bases orthonormées de E

On définit dans $\mathcal B$ la relation $\mathcal R$ suivante par :/

$$\left(\forall B\in\mathcal{B}\right)\left(\forall B'\in\mathcal{B}\right)\left(B\mathcal{R}B'\right)\Longleftrightarrow\left(\exists R\in\mathcal{O}^{+}\left(E\right)\right)\text{tel que }\left(B'=R\left(B\right)\right)$$

Alors:

- 1. \mathcal{R} est une relation d'équivalence sur \mathcal{B}
- 2. L'ensemble des classes d'équivalence modulo \mathcal{R} , noté \mathcal{B}/\mathcal{R} n'a que deux éléments.
- 3. Orienter le \mathbb{R} -espace vectoriel E, c'est choisir <u>arbitrairement</u> un élément $\dot{B_0} \in \mathcal{B}/\mathcal{R}$. Tous les éléments de $\dot{B_0}$ sont appelés <u>bases orthonormées directes</u> (ou positives)
- 4. Toutes les autres bases sont les bases orthonormées indirectes (ou négatives)

Remarque 1:

1. Qu'est ce que cela veut dire qu'il existe $R \in \mathcal{O}^+(E)$ tel que B' = R(B)? Ceci veut donc dire qu'il existe une **rotation** R, telle que que si $B = \{\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\}$ et $B' = \{\overrightarrow{i'}, \overrightarrow{j'}, \overrightarrow{k'}\}$ sont deux bases orthonormées de E, alors :

$$\overrightarrow{i'} = R\left(\overrightarrow{i}\right) \quad \overrightarrow{j'} = R\left(\overrightarrow{j}\right) \quad \overrightarrow{k'} = R\left(\overrightarrow{k}\right)$$

- 2. Il est clair que cette définition peut aussi s'appliquer à un plan P de dimension 2; dans le plan vectoriel P, il existe donc des bases orthonormées directes ou indirectes.
- 3. Et plus généralement si E est un \mathbb{R} -espace vectoriel euclidien de dimension n, il est tout à fait possible de définir une orientation de E

Démonstration

Nous allons démontrer 18.1.1

- 1. \mathcal{R} est une relation d'équivalence
 - \Rightarrow Elle est réflexive En effet, pour tout $B \in \mathcal{B}$, il existe $R \in \mathcal{O}^+(E)$ telle que B = R(B), et cette rotation est $R = \mathrm{Id}_E$

⇒ Elle est symétrique

Soient $B \in \mathcal{B}$ et $B' \in \mathcal{B}$ telles que $B\mathcal{R}B'$, c'est à dire qu'il existe $R \in \mathcal{O}^+(E)$ telle que

clairement, nous avons $B = R^{-1}(B')$ et donc B'RB.

La relation \mathcal{R} est donc symétrique.

 \Rightarrow Elle est transitive

Soient donc $B \in \mathcal{B}, B' \in \mathcal{B}$ et $B'' \in \mathcal{B}$ telles que $B\mathcal{R}B'$ et $B'\mathcal{R}B''$

Il existe $R_1 \in \mathcal{O}^+(E)$ telle que $B' = R_1(B)$ et $R_2 \in \mathcal{O}^+(E)$ telle que $B'' = R_2(B')$ Alors, par composition $B'' = R_2 \circ R_1(B)$. Comme $\mathcal{O}^+(E)$ est un sous-groupe de $\mathcal{O}(E)$, nous avons $R_2 \circ R_1 \in \mathcal{O}^+(E)$ et donc $B''\mathcal{R}B$

la relation \mathcal{R} est donc transitive

Et donc, la relation \mathcal{R} est une relation d'équivalence

- 2. \mathcal{B}/\mathcal{R} n'a que deux classes d'équivalence
 - * Tout d'abord, il y a au moins 2 classes d'équivalences.

En effet; prenons E, \mathbb{R} -espace vectoriel euclidien de dimension 3 et $B = \{\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\}$ une base orthonormée de E. $B' = \{\overrightarrow{i}, \overrightarrow{j}, -\overrightarrow{k}\}$ est aussi une base orthonormée de E, et l'application φ qui transforme B en B' est une transformation orthogonale ($\varphi \in \mathcal{O}(E)$). La matrice de φ dans la base B est donnée par :

$$S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

C'est la matrice d'une symétrie orthogonale et donc $\varphi \in \mathcal{O}^{-}(E)$. B et B' ne sont pas en relation et appartiennent donc à 2 classes différentes.

★ Il n'y a que 2 classes

Soient $B \in \mathcal{B}$ et $S \in \mathcal{O}^{-}(E)$; on appelle B' = S(B); alors B' est une base orthonormée, c'est à dire $B' \in \mathcal{B}$, mais, comme ci-dessus, B et B' ne sont pas en relation.

Soit $B'' \in \mathcal{B}$ une troisième base orthonormée.

Il existe un et un seul endomorphisme orthogonal $\varphi \in \mathcal{O}(E)$ tel que $\varphi(B) = B''$

De même, il existe un et un seul endomorphisme orthogonal $\psi \in \mathcal{O}(E)$ tel que $\psi(B'') = B'$

Ainsi, $\psi \circ \varphi(B) = B'$, c'est à dire $\psi \circ \varphi = S \in \mathcal{O}^-(E)$. Il y a donc 2 possibilités

- \rightarrow Ou bien $\psi \in \mathcal{O}^-(E)$ et $\varphi \in \mathcal{O}^+(E)$ et donc nous avons $B''\mathcal{R}B$
- \rightarrow Ou bien $\psi \in \mathcal{O}^+(E)$ et $\varphi \in \mathcal{O}^-(E)$ et donc nous avons $B''\mathcal{R}B'$

Il y a donc, exactement, 2 classes d'équivalences.

Théorème : dans le cas du plan vectoriel

Soit $\{\overrightarrow{i}, \overrightarrow{j}\}$ une base orthonormée du plan vectoriel P

Pour qu'une base orthonormée $\{\overrightarrow{u},\overrightarrow{v}\}$ soit de même orientation que $\{\overrightarrow{i},\overrightarrow{j}\}$, il faut et il suffit que

$$\det_{\left\{\overrightarrow{i},\overrightarrow{j}\right\}} \left(\left\{\overrightarrow{u},\overrightarrow{v}\right\} \right) = +1$$

Démonstration

1. Si la base $\{\overrightarrow{u},\overrightarrow{v}\}$ est de même orientation que $\{\overrightarrow{i},\overrightarrow{j}\}$, il existe une rotation $r\in\mathcal{O}\left(P\right)$ telle que $r(\overrightarrow{i}) = \overrightarrow{u}$ et $r(\overrightarrow{j}) = \overrightarrow{v}$. La matrice de r est donnée par :

$$\mathcal{M}_{\left\{\overrightarrow{i},\overrightarrow{j}\right\}}(r) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \text{ avec } a^2 + b^2 = 1$$

Nous avons donc $\overrightarrow{u} = r(\overrightarrow{i}) = a\overrightarrow{i} - b\overrightarrow{j}$ et $\overrightarrow{v} = r(\overrightarrow{j}) = b\overrightarrow{i} + a\overrightarrow{j}$, et donc :

$$\det_{\left\{\overrightarrow{i},\overrightarrow{j}\right\}}\left(\left\{\overrightarrow{u},\overrightarrow{v}\right\}\right) = \begin{vmatrix} a & b \\ -b & a \end{vmatrix} = a^2 + b^2 = 1$$

2. Réciproquement, si $\det_{\left\{\overrightarrow{u},\overrightarrow{\mathcal{V}}\right\}}(\{\overrightarrow{u},\overrightarrow{v}\})=+1$

Ecrivons $\overrightarrow{u} = \lambda_1 \overrightarrow{i} + \lambda_2 \overrightarrow{j}$ et $\overrightarrow{v} = \mu_1 \overrightarrow{i} + \mu_2 \overrightarrow{j}$. Comme $\{\overrightarrow{u}, \overrightarrow{v}\}$ est une base orthonormée, nous avons :

$$\star \ \lambda_1^2 + \lambda_2^2 = 1$$

$$\star \ \mu_1^2 + \mu_2^2 = 1$$

$$\star \ \lambda_1 \mu_1 + \lambda_2 \mu_2 = 0$$

Et nous avons en plus $\lambda_1\mu_2 - \mu_1\lambda_2 = 1$

Si $\varphi \in \mathcal{O}(P)$ est l'endomorphisme orthogonal tel que $\varphi\left(\overrightarrow{i}\right) = \overrightarrow{u}$ et $\varphi\left(\overrightarrow{j}\right) = \overrightarrow{v}$, la matrice de φ dans la base $\left\{\overrightarrow{i},\overrightarrow{j}\right\}$ est donnée par :

ar:
$$\mathcal{M}\left(\varphi\right) = \begin{pmatrix} \lambda_1 & \mu_1 \\ \lambda_2 & \mu_2 \end{pmatrix}$$

Nous sommes dans le même problème que celui de la proposition 15.3.2, avec comme contrainte supplémentaire d'un déterminant $\lambda_1\mu_2-\mu_1\lambda_2=1$

D'où $\lambda_2 = -\mu_1$ et $\mu_2 = \lambda_1$; nous trouvons alors comme matrice de φ , la matrice

$$\mathcal{M}\left(\varphi\right) = \begin{pmatrix} \lambda_1 & \mu_1 \\ -\mu_1 & \lambda_1 \end{pmatrix}$$

qui est une matrice de rotation.

Nous concluons donc que la base orthonormée $\{\overrightarrow{u}, \overrightarrow{v}\}$ est de même orientation que la base $\{\overrightarrow{i}, \overrightarrow{j}\}$

Exercice 1:

Soit P un plan vectoriel orienté par la base $\{\overrightarrow{i}, \overrightarrow{j}\}$. Les bases suivantes sont -elles directes? Indirectes?

1.
$$\left\{\overrightarrow{j}, -\overrightarrow{i}\right\}$$

3.
$$\left\{-\overrightarrow{j}, -\overrightarrow{i}\right\}$$

5.
$$\left\{-\overrightarrow{j}, \overrightarrow{i}\right\}$$

2.
$$\left\{\overrightarrow{i}, -\overrightarrow{j}\right\}$$

4.
$$\left\{-\overrightarrow{i}, -\overrightarrow{j}\right\}$$

6.
$$\left\{\overrightarrow{j}, \overrightarrow{i}\right\}$$

18.1.3 Théorème

Soit P un plan vectoriel orienté par la base $\{\overrightarrow{i}, \overrightarrow{j}\}$. Alors

Pour tout vecteur <u>unitaire</u> $\overrightarrow{u} \in P$ il existe un et un seul vecteur unitaire $\overrightarrow{v} \in P$ tel que $\{\overrightarrow{u}, \overrightarrow{v}\}$ soit une base orthonormée directe de P

Démonstration

Soit $\overrightarrow{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ un vecteur unitaire de P. Alors $x^2 + y^2 = 1$.

Il existe 2 vecteurs orthogonaux à \overrightarrow{u} :

$$\overrightarrow{v} = \begin{pmatrix} -y \\ x \end{pmatrix}$$
 et $\overrightarrow{v'} = -\overrightarrow{v}$

 $\{\overrightarrow{u},\overrightarrow{v}\}$ et $\{\overrightarrow{u},-\overrightarrow{v}\}$ forment des bases orthonormées du plan; c'est une symétrie qui fait passer de l'une à l'autre, et donc une seule des deux est directe.

$$\det_{\left\{\overrightarrow{i},\overrightarrow{j}\right\}} \left(\left\{\overrightarrow{u},\overrightarrow{v}\right\} \right) = \begin{vmatrix} x & -y \\ y & x \end{vmatrix} = x^2 + y^2 = 1$$

Nous avons, bien entendu $\det_{\left\{\overrightarrow{i},\overrightarrow{j}\right\}}(\left\{\overrightarrow{u},-\overrightarrow{v}\right\})=-1$ et donc, seul le vecteur \overrightarrow{v} convient

18.1.4 En dimension 3

Soit $\{\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\}$ une base orthonormée de E, \mathbb{R} -espace vectoriel euclidien de dimension 3

Pour qu'une base orthonormée $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ soit de même orientation que $\{\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\}$, il faut et il suffit que

$$\det_{\left\{\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\right\}}\left(\left\{\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}\right\}\right)=+1$$

Démonstration

La démonstration en est très simple et semblable à 18.1.2 puisque qu'une matrice de rotation dans l'espace de dimension 3 a, elle aussi, un déterminant égal à 1.

Exercice 2:

Soit E un \mathbb{R} -espace vectoriel euclidien de dimension 3 orienté par la base orthonormée $\{\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\}$. Quelles sont les orientations des bases suivantes?

1.
$$\{\overrightarrow{j}, \overrightarrow{k}, \overrightarrow{i}\}$$

3.
$$\left\{\overrightarrow{k}, \overrightarrow{j}, \overrightarrow{i}\right\}$$

1.
$$\{\overrightarrow{j}, \overrightarrow{k}, \overrightarrow{i}\}$$
2. $\{\overrightarrow{i}, \overrightarrow{k}, \overrightarrow{j}\}$
3. $\{\overrightarrow{k}, \overrightarrow{j}, \overrightarrow{i}\}$
4. $\{\overrightarrow{k}, \overrightarrow{i}, \overrightarrow{j}\}$
5. $\{-\overrightarrow{i}, -\overrightarrow{j}, \overrightarrow{k}\}$
6. $\{-\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\}$

7.
$$\left\{\overrightarrow{i}, -\overrightarrow{j}, -\overrightarrow{k}\right\}$$

2.
$$\{\overrightarrow{i}, \overrightarrow{k}, \overrightarrow{j}\}$$

4.
$$\{\overrightarrow{k}, \overrightarrow{i}, \overrightarrow{j}\}$$

6.
$$\left\{-\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right\}$$

18.1.5 Théorème

Soit E un \mathbb{R} -espace vectoriel de dimension 3

Soient \overrightarrow{i} et \overrightarrow{j} 2 vecteurs unitaires et orthogonaux de E, c'est à dire $\left\langle \overrightarrow{i} \mid \overrightarrow{j} \right\rangle = 0$ et $\left\| \overrightarrow{i} \right\| = \left\| \overrightarrow{j} \right\| = 1$.

Alors II existe un et un seul vecteur unitaire \overrightarrow{k} tel que $\{\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\}$ soit une base orthonormée directe

Démonstration

Soient \overrightarrow{i} et \overrightarrow{j} 2 vecteurs unitaires et orthogonaux de E et P le plan engendré par \overrightarrow{i} et \overrightarrow{j} . Soit D la droite orthogonale à P et \overrightarrow{u} un vecteur unitaire, base de D $\{\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\}$ sera une base orthonormée de E si et seulement si $\overrightarrow{k} = \pm \overrightarrow{u}$. Or, les bases orthonormées $\left\{\overrightarrow{i},\overrightarrow{j},\overrightarrow{u}\right\}$ et $\left\{\overrightarrow{i},\overrightarrow{j},-\overrightarrow{u}\right\}$ n'ont pas la même orientation. d'où le résultat

Remarque 2:

On démontre de même que :

- 1. Si \overrightarrow{i} et \overrightarrow{k} sont 2 vecteurs unitaires et orthogonaux de E, il existe un seul vecteur unitaire \overrightarrow{j} tel que $\{\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\}$ soit une base orthonormée directe de E
- 2. Si \overrightarrow{j} et \overrightarrow{k} sont 2 vecteurs unitaires et orthogonaux de E, il existe un seul vecteur v \overrightarrow{i} tel que $\{\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\}$ soit une base orthonormée directe de E

18.1.6 Théorème

Soit E un \mathbb{R} -espace vectoriel de dimension 3 euclidien et orienté Soit P un plan vectoriel de E et D la droite orthogonale à P

- 1. Si P est orienté, alors il existe un unique vecteur unitaire $\overrightarrow{w} \in D$ telle que si $\{\overrightarrow{u}, \overrightarrow{v}\}$ est une base directe de P alors $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ est une base directe de E
- 2. Réciproquement, orienter le plan P par un vecteur unitaire $\overrightarrow{k} \in D$, c'est convenir que la base $\{\overrightarrow{i}, \overrightarrow{j}, \}$ est directe si la base $\{\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\}$ est directe.

Démonstration

- 1. Supposons P orienté, et soit $\{\overrightarrow{u}, \overrightarrow{v}\}$ une base directe de P. D'après le théorème 18.1.5, il existe un seul vecteur $\overrightarrow{w} \in D$ tel que $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ soit une base directe de E
- 2. Soit $\overrightarrow{k} \in D$ un vecteur unitaire fixé. Nous allons montrer que, pour toute base orthonormée $\{\overrightarrow{u}, \overrightarrow{v}\}\$ et $\{\overrightarrow{u_1}, \overrightarrow{v_1}\}\$ de P, nous avons l'équivalence :

(a) Supposons que $\{\overrightarrow{u}, \overrightarrow{v}\}$ et $\{\overrightarrow{u_1}, \overrightarrow{v_1}\}$ sont 2 bases orthonormées de P qui ont même orientation \mathbb{I} existe donc une rotation $r \in \mathcal{O}^+(P)$ telle que $r(\overrightarrow{u}) = \overrightarrow{u_1}$ et $r(\overrightarrow{v}) = \overrightarrow{v_1}$. \mathbb{I} existe donc $a \in \mathbb{R}$ et $b \in \mathbb{R}$ avec $a^2 + b^2 = 1$ tels que :

$$\left\{ \begin{array}{ll} \overrightarrow{u_1} = & a \overrightarrow{u} - b \overrightarrow{v} \\ \overrightarrow{v_1} = & a \overrightarrow{u} + b \overrightarrow{v} \end{array} \right.$$

Les 2 bases $\left\{\overrightarrow{u},\overrightarrow{v},\overrightarrow{k}\right\}$ et $\left\{\overrightarrow{u_1},\overrightarrow{v_1},\overrightarrow{k}\right\}$ sont deux bases orthonormées de E Soit $\varphi\in\mathcal{O}\left(E\right)$ telle que $\varphi\left(\overrightarrow{u}\right)=\overrightarrow{u_1},\,\varphi\left(\overrightarrow{v}\right)=\overrightarrow{v_1}$ et $\varphi\left(\overrightarrow{k}\right)=\overrightarrow{k}$ Alors, la matrice de φ dans la base $\left\{\overrightarrow{u},\overrightarrow{v},\overrightarrow{k}\right\}$ est donnée par :

$$\begin{pmatrix} a & b & 0 \\ -b & a & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

C'est une matrice de rotation ; φ est donc une rotation et les 2 bases orthonormées $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{k}\}$ et $\{\overrightarrow{u_1}, \overrightarrow{v_1}, \overrightarrow{k}\}$ ont même orientation.

(b) Supposons que $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{k}\}$ et $\{\overrightarrow{u_1}, \overrightarrow{v_1}, \overrightarrow{k}\}$ sont 2 bases orthonormées de E qui ont même orientation. Il existe alors une rotation $\rho \in \mathcal{O}^+(E)$ telle que $\rho(\overrightarrow{u}) = \overrightarrow{u_1}, \ \rho(\overrightarrow{v}) = \overrightarrow{v_1}$ et $\rho(\overrightarrow{k}) = \overrightarrow{k}$. La matrice de ρ dans la base $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{k}\}$ est donnée par :

$$\mathcal{M}_{\left\{\overrightarrow{u},\overrightarrow{v},\overrightarrow{k}\right\}}(\rho) = \begin{pmatrix} a & -b & 0\\ b & a & 0\\ 0 & 0 & 1 \end{pmatrix} \text{ avec } a^2 + b^2 = 1$$

Si ψ est la restriction de ρ à P, nous avons $\psi(\overrightarrow{u}) = \rho(\overrightarrow{u}) = \overrightarrow{u_1}, \ \psi(\overrightarrow{v}) = \rho(\overrightarrow{v}) = \overrightarrow{v_1}$, et la matrice de ψ dans la base $\{\overrightarrow{u}, \overrightarrow{v}\}$ est donnée par :

$$\mathcal{M}_{\left\{\overrightarrow{u},\overrightarrow{v}\right\}}(\psi) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \text{ avec } a^2 + b^2 = 1$$

Qui est la matrice d'une rotation.

Donc les bases orthonormées $\{\overrightarrow{u}, \overrightarrow{v}\}$ et $\{\overrightarrow{u_1}, \overrightarrow{v_1}\}$ ont même orientation dans P

Remarque 3:

Il faut remarquer que le choix du vecteur \overrightarrow{k} directeur de la droite D détermine l'orientation du plan P qui lui est orthogonal.

18.1.7 Mesure d'une rotation vectorielle d'un \mathbb{R} -espace vectoriel E orienté de dimension 3

Soit E un \mathbb{R} -espace vectoriel euclidien orienté et ρ une rotation de E \overrightarrow{k} est un vecteur unitaire invariant par ρ et P est le plan orthogonal à \overrightarrow{k} On sait que $\psi=\rho_{|P}$ est une rotation du plan P

On appelle <u>mesure en radians</u> de la rotation vectorielle ρ relativement \overrightarrow{a} \overrightarrow{k} toute mesure en radians de la rotation vectorielle $\psi = \rho_{|P|}$ dans le plan vectoriel P orienté par \overrightarrow{k}

18.1.8 Théorème

Soit E un \mathbb{R} -espace vectoriel euclidien orienté de dimension 3 et ρ une rotation vectorielle de E de mesure x relativement à un vecteur \overrightarrow{k} invariant par ρ . Alors

La matrice de ρ dans une base orthonormée directe $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{k}\}$ est donnée par :

$$\mathcal{M}_{\left\{\overrightarrow{u},\overrightarrow{v},\overrightarrow{k}\right\}}\left(\rho\right) = \begin{pmatrix} \cos x & -\sin x & 0\\ \sin x & \cos x & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Démonstration

Soit x la mesure de l'angle de la rotation ρ . L'axe de la rotation, c'est à dire le vecteur \overrightarrow{k} détermine une orientation du plan qui lui est orthogonal. Soit donc $\{\overrightarrow{u}, \overrightarrow{v}\}$ une base orthonormée directe de $P = \{\overrightarrow{k}\}^{\perp}$.

On appelle $\psi = \rho_{|P}$ la restriction de la rotation ρ à P; alors, la matrice de ψ dans la base $\{\overrightarrow{u}, \overrightarrow{v}\}$ est donnée par :

$$\mathcal{M}_{\left\{\overrightarrow{u},\overrightarrow{v}\right\}}(\psi) = \begin{pmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{pmatrix}$$

Et donc, la matrice de ρ dans une base orthonormée directe $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{k}\}$ est donnée par :

$$\mathcal{M}_{\left\{\overrightarrow{u},\overrightarrow{v},\overrightarrow{k}\right\}}(\rho) = \begin{pmatrix} \cos x & -\sin x & 0\\ \sin x & \cos x & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Remarque 4:

- 1. Une rotation ρ d'un \mathbb{R} -espace vectoriel euclidien de dimension 3 est donc entièrement déterminée par son vecteur invariant \overrightarrow{k} et sa mesure x (modulo 2π) autour du vecteur \overrightarrow{k}
- 2. Si $x = 2k\pi$ avec $k \in \mathbb{Z}$, alors $\rho = \mathrm{Id}_E$
- 3. Si $x = (2k+1)\pi$ avec $k \in \mathbb{Z}$, alors ρ est la symétrie orthogonale par rapport à la droite engendrée par k

18.1.9 Quelques exercices

Exercice 3:

E est un \mathbb{R} -espace vectoriel euclidien orienté par la base orthonormée directe $\{\overrightarrow{i}, \overrightarrow{j}; \overrightarrow{k}\}$. Nous appelons φ_1 la rotation vectoriele de mesure $\frac{\pi}{2}$ et d'axe \overrightarrow{i} et par φ_2 la rotation vectoriele de mesure $\frac{\pi}{2}$ et d'axe \overrightarrow{j} .

1. Déterminer, par ses coordonnées, un vecteur unitaire $\overrightarrow{k_1}$ invariant par la rotation $\varphi_2 \circ \varphi_1$

- 2. Déterminer, par leurs coordonnées, deux vecteurs unitaires $\overrightarrow{i_1}$ et $\overrightarrow{j_1}$ tels que $\left\{\overrightarrow{i_1},\overrightarrow{j_1};\overrightarrow{k_1}\right\}$ soit une base orthonormée directe de ${\cal E}$
- 3. Démontrer que si x est une mesure de l'angle de la rotation $\varphi_2 \circ \varphi_1$ d'axe $\overrightarrow{k_1}$, nous avons :

$$\left\langle \overrightarrow{i_1} \mid \varphi_2 \circ \varphi_1 \left(\overrightarrow{i_1} \right) \right\rangle = \cos x \quad \text{ et } \quad \left\langle \overrightarrow{j_1} \mid \varphi_2 \circ \varphi_1 \left(\overrightarrow{j_1} \right) \right\rangle = \sin x$$

En déduire x

Exercice 4:

E est un \mathbb{R} -espace vectoriel euclidien orienté par la base orthonormée directe $\mathcal{B}_0 = \left\{\overrightarrow{i}, \overrightarrow{j}; \overrightarrow{k}\right\}$. On

$$\overrightarrow{I} = \frac{1}{3} \left(2 \overrightarrow{i} + 2 \overrightarrow{j} - \overrightarrow{k} \right) \quad \overrightarrow{J} = \frac{1}{3} \left(-\overrightarrow{i} + 2 \overrightarrow{j} + 2 \overrightarrow{k} \right) \quad \overrightarrow{K} = \frac{1}{3} \left(2 \overrightarrow{i} - \overrightarrow{j} + 2 \overrightarrow{k} \right)$$

- 1. Vérifier que la famille $\{\overrightarrow{I},\overrightarrow{J};\overrightarrow{K}\}$ forme une base orthonormée
- 2. Donner la définition analytique de la transformation orthogonale φ qui transforme la base \mathcal{B}_0 en la base $\{\overrightarrow{I}, \overrightarrow{J}; \overrightarrow{K}\}$
- 3. Montrer que φ est une rotation dont l'axe est engendré par le vecteur $\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$.
- 4. Soit P le plan vectoriel orthogonal au vecteur $\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$ et orienté par le vecteur unitaire $\frac{1}{\sqrt{3}} \left(\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k} \right)$.

Calculer la mesure de la restriction de φ à P