Chapitre 20

Les similitudes

Les similitudes vectorielles 20.1

20.1.1 Définition

Soit E un \mathbb{R} -espace vectoriel euclidien. Une similitude de E est une application linéaire φ de E dans E (i.e. $\varphi \in \mathcal{L}(E)$) telle que :

$$\left(\exists k>0\right)\left(\forall \,\overrightarrow{u}\in E\right)\left(\|\varphi\left(\overrightarrow{u}\right)\|=k\,\|\overrightarrow{u}\|\right)$$

k est appelé le rapport de la similitude

20.1.2 **Proposition**

Soit E un \mathbb{R} -espace vectoriel euclidien.

- 1. La composition de 2 similitudes est encore une similitude
- 2. Une similitude est une application linéaire injective

Démonstration

1. Soient f et g 2 similitudes de rapports respectifs k_f et k_g . Soit $\overrightarrow{u} \in E$. Alors:

$$\|g\circ f\left(\overrightarrow{u}\right)\|=\|g\left[f\left(\overrightarrow{u}\right)\right]\|=k_{g}\left\|f\left(\overrightarrow{u}\right)\right\|=k_{g}\times k_{f}\left\|\overrightarrow{u}\right\|$$

Ainsi, $g \circ f$ est une similitude de rapport $k_q \times k_f$

2. Soit f une similitude de rapport k_f

Soit $\overrightarrow{u} \in \ker f$

Alors $f(\overrightarrow{u}) = \overrightarrow{0}$ et donc $||f(\overrightarrow{u})|| = 0$. Comme f est une similitude, $k_f ||\overrightarrow{u}|| = 0$ et donc, comme $k_f > 0$, nous avons $\|\overrightarrow{u}\| = 0$, c'est à dire $\overrightarrow{u} = \overrightarrow{0}$.

Donc, comme $\ker f = \{\overrightarrow{0}\}, f \text{ est injective}$

Remarque 1:

Si E est de dimension finie, f est en fait bijective.

Décomposition d'une similitude

Soit E un \mathbb{R} -espace vectoriel euclidien. Alors, $\varphi \in \mathcal{L}\left(E\right)$ est une similitude si et seulement si elle se décompose en le produit d'une homothétie vectorielle H et d'une isométrie $\theta \in \mathcal{L}(E)$, c'est à dire :

$$\varphi = H \circ \theta = \theta \circ H$$

Démonstration

Soit E un \mathbb{R} -espace vectoriel euclidien

1. Soit $\varphi = \theta \circ H$ où H est une homothétie de rapport $k \in \mathbb{R}^*$ et θ une isométrie de $\mathcal{L}(E)$ Alors φ est une application linéaire comme composée de 2 applications linéaires . D'autre part, soit $\overrightarrow{u} \in E$, alors :

$$\|\varphi(\overrightarrow{u})\| = \|\theta(H(\overrightarrow{u}))\| = \|\theta(k\overrightarrow{u})\| = \|k\theta(\overrightarrow{u})\| = |k| \|\theta(\overrightarrow{u})\| = k \|\overrightarrow{u}\|$$

Ce qui montre que φ est une similitude de rapport |k| > 0

2. Réciproquement, soit $\varphi \in \mathcal{L}\left(E\right)$ où φ est une similitude de rapport k>0

On considère l'homothétie H de rapport $\frac{1}{k}$, et soit $\theta = H \circ \varphi$.

Tout d'abord θ est linéaire comme composée de 2 applications linéaires .

De plus, on démontre, sans difficulté que θ est une isométrie et donc que $\varphi = H^{-1} \circ \theta$.

 H^{-1} est aussi une homothétie, mais de rapport k. et donc φ est la composée d'une homothétie et d'une isométrie.

Remarque 2:

- 1. D'autre part, dans la décomposition $\varphi = H \circ \theta = \theta \circ H$, les θ et H sont, à priori, différents
- 2. Le rapport de la similitude k > 0 est bien entendu unique et ne dépend que de la similitude

Exercice 1:

Montrer que le rapport k d'une similitude S est unique.

Exemple 1:

Exemples de similitudes

Commençons par donner des exemples de similitudes

- 1. Toute isométrie du \mathbb{R} -espace vectoriel euclidien E est une similitude ; c'est une similitude de rapport k=1
- 2. Toute homothétie de rapport $k \in \mathbb{R}^*$ du \mathbb{R} -espace vectoriel euclidien E est une similitude; c'est une similitude de rapport |k|

20.1.4 Théorème

Soit E un \mathbb{R} -espace vectoriel euclidien. Alors :

 $\varphi \in \mathcal{L}\left(E\right)$ est une similitude si et seulement si φ est une application linéaire de E non constante telle qu'il existe $\alpha>0$ telle que pour tout $\overrightarrow{u}\in E$ et tout $\overrightarrow{v}\in E$, nous ayons $\langle \varphi\left(\overrightarrow{u}\right)|\,\varphi\left(\overrightarrow{v}\right)\rangle=\alpha\,\langle\overrightarrow{u}\,|\,\overrightarrow{v}\rangle$

Démonstration

1. Soit φ une similitude de E de rapport k > 0

Alors, d'après 20.1.3, $\varphi = H \circ \theta$ où $\theta \in \mathcal{L}(E)$ est une isométrie de E, c'est à dire un endomorphisme orthogonal conservant le produit scalaire et H une homothétie de rapport k.

Alors, pour tout $\overrightarrow{u} \in E$ et tout $\overrightarrow{v} \in E$, nous avons :

$$\begin{split} \langle \varphi \left(\overrightarrow{u} \right) \mid \varphi \left(\overrightarrow{v} \right) \rangle &= \langle H \circ \theta \left(\overrightarrow{u} \right) \mid H \circ \theta \left(\overrightarrow{v} \right) \rangle \\ &= \langle H \left[\theta \left(\overrightarrow{u} \right) \right] \mid H \left[\theta \left(\overrightarrow{v} \right) \right] \rangle \\ &= \langle k \theta \left(\overrightarrow{u} \right) \mid k \theta \left(\overrightarrow{v} \right) \rangle \\ &= k^2 \langle \theta \left(\overrightarrow{u} \right) \mid \theta \left(\overrightarrow{v} \right) \rangle \\ &= k^2 \langle \overrightarrow{u} \mid \overrightarrow{v} \rangle \text{ car } \theta \text{ est un endomorphisme orthogonal} \end{split}$$

Ainsi, si φ est une similitude de E de rapport k > 0, alors, il existe $\alpha = k^2 > 0$ tel que pour tout $\overrightarrow{u} \in E$ et tout $\overrightarrow{v} \in E$, nous avons $\langle \varphi(\overrightarrow{u}) | \varphi(\overrightarrow{v}) \rangle = \alpha \langle \overrightarrow{u} | \overrightarrow{v} \rangle$

2. Réciproquement

Soit $\varphi \in \mathcal{L}(E)$, non constante, tel qu'il existe $\alpha > 0$ telle que pour tout $\overrightarrow{u} \in E$ et tout $\overrightarrow{v} \in E$, nous ayons $\langle \varphi(\overrightarrow{u}) | \varphi(\overrightarrow{v}) \rangle = \alpha \langle \overrightarrow{u} | \overrightarrow{v} \rangle$

 \longrightarrow Tout d'abord, $\alpha \neq 0$

Supposons $\alpha = 0$; alors, pour tout $\overrightarrow{u} \in E$ et tout $\overrightarrow{v} \in E$, nous ayons $\langle \varphi(\overrightarrow{u}) | \varphi(\overrightarrow{v}) \rangle = 0$ Donc, lorsque $\overrightarrow{u} = \overrightarrow{v}$, pour tout $\overrightarrow{u} \in E$, nous avons $\langle \varphi(\overrightarrow{u}) | \varphi(\overrightarrow{u}) \rangle = \|\varphi(\overrightarrow{u})\|^2 = 0$, c'est à dire $\varphi(\overrightarrow{u}) = \overrightarrow{0}$

Et φ est une application linéaire constante. Il y a donc contradiction. Donc $\alpha \neq 0$

 \longrightarrow Ensuite, nous avons $\alpha > 0$

En effet, pour tout $\overrightarrow{u} \in E$, nous avons :

$$\left\langle \varphi\left(\overrightarrow{u}\right) \mid \varphi\left(\overrightarrow{u}\right)\right\rangle = \alpha \left\langle \overrightarrow{u} \mid \overrightarrow{u}\right\rangle \Longleftrightarrow \left\|\varphi\left(\overrightarrow{u}\right)\right\|^{2} = \alpha \left\|\overrightarrow{u}\right\|^{2}$$

Et donc $\alpha > 0$

Soit $\theta=H_{\frac{1}{\sqrt{\alpha}}}\circ \varphi$ où $H_{\frac{1}{\sqrt{\alpha}}}$ est une homothétie de rapport $\frac{1}{\sqrt{\alpha}}$

Alors, θ est linéaire comme composée d'applications linéaires et θ est une isométrie puisque, si $\overrightarrow{u} \in E$:

$$\left\|\theta\left(\overrightarrow{u}\right)\right\|^{2} = \left\|H_{\frac{1}{\sqrt{\alpha}}}\circ\varphi\left(\overrightarrow{u}\right)\right\|^{2} = \frac{1}{\alpha}\left\|\varphi\left(\overrightarrow{u}\right)\right\|^{2} = \frac{1}{\alpha}\times\alpha\left\|\overrightarrow{u}\right\|^{2} = \left\|\overrightarrow{u}\right\|^{2}$$

C'est à dire que nous avons $\|\theta(\overrightarrow{u})\|^2 = \|\overrightarrow{u}\|^2 \iff \|\theta(\overrightarrow{u})\| = \|\overrightarrow{u}\|$.

 θ est donc une isométrie.

Ainsi,
$$\varphi = \left(H_{\frac{1}{\sqrt{\alpha}}}\right)^{-1} \circ \theta = H_{\sqrt{\alpha}} \circ \theta$$

Ce qui montre que φ , composée d'une homothétie de rapport $\sqrt{\alpha}$ et d'une isométrie θ est une similitude de rapport $\sqrt{\alpha}$

Remarque 3:

Une remarque importante, c'est que nous avons aussi démontré que $\alpha > 0$ et que la similitude a un rapport de $\sqrt{\alpha}$

20.1.5 Corollaire de 20.1.4

Soit E un \mathbb{R} -espace vectoriel euclidien <u>de dimension finie</u>. Alors, toute similitude φ de E est un automorphisme

Démonstration

On sait qu'une similitude est injective. Comme E est de dimension finie, et que la similitude est une application linéaire , cette similitude est donc aussi une bijection. Ce qu'il fallait démontrer

20.1.6 Théorème

Soit E un \mathbb{R} -espace vectoriel euclidien <u>de dimension finie</u>. Nous appellons Sim(E) l'ensemble des similitudes de E. Alors Sim(E) muni de la composition des applications est un groupe non commutatif

Démonstration

- 1. La loi o est associative
- 2. Nous savons déjà que la composition de 2 similitudes est une similitude. La composition des applications est donc interne.

3. E étant de dimension finie, toute similitude $\varphi \in Sim(E)$ est un automorphisme, donc bijective : φ est donc inversible

Mais, si φ est une similitude, est ce que φ^{-1} est une similitude?

Si φ est une similitude, alors φ se décompose en un produite d'une homothétie H et d'une isométrie θ , et donc $\varphi = H \circ \theta$.

Nous avons $\varphi^{-1} = (H \circ \theta)^{-1} = \theta^{-1} \circ H^{-1}$

- $\rightarrow H$ étant une homothétie, H^{-1} en est une aussi
- \rightarrow Si θ est une isométrie, θ^{-1} en est une aussi

Donc $\varphi^{-1} = \theta^{-1} \circ H^{-1}$ est une similitude.

Nous pouvons donc conclure que Sim(E) muni de la composition des applications est un groupe.

20.1.7Théorème

Soit E un \mathbb{R} -espace vectoriel euclidien et Sim(E) l'ensemble des similitudes de E. Alors, Sim(E)est exactement l'ensemble des endomorphismes de E qui conservent l'orthogonalité, c'est à dire l'ensemble des endomorphismes $\varphi \in \mathcal{L}\left(E\right)$ tels que :

$$(\forall \overrightarrow{u} \in E) \, (\forall \overrightarrow{v} \in E) \, ((\langle \overrightarrow{u} \mid \overrightarrow{v} \rangle = 0) \Longrightarrow (\langle \varphi \, (\overrightarrow{u}) \mid \varphi \, (\overrightarrow{v}) \rangle = 0))$$

Démonstration

1. Soit $\varphi \in Sim(E)$

Alors, d'après 20.1.4, il existe $\alpha > 0$ tel que pour tout $\overrightarrow{u} \in E$ et tout $\overrightarrow{v} \in E$, nous ayons $\langle \varphi(\overrightarrow{u}) \mid \varphi(\overrightarrow{v}) \rangle = \alpha \langle \overrightarrow{u} \mid \overrightarrow{v} \rangle$

Donc, si
$$\langle \overrightarrow{u} \mid \overrightarrow{v} \rangle = 0$$
, alors $\langle \varphi(\overrightarrow{u}) \mid \varphi(\overrightarrow{v}) \rangle = 0$

2. Réciproquement

Soit $\varphi \in \mathcal{L}(E)$ telle que

$$(\forall \overrightarrow{u} \in E) (\forall \overrightarrow{v} \in E) ((\langle \overrightarrow{u} \mid \overrightarrow{v} \rangle = 0) \Longrightarrow (\langle \varphi (\overrightarrow{u}) \mid \varphi (\overrightarrow{v}) \rangle = 0))$$

Nous allons démontrer qu'il existe $\alpha > 0$ tel que pour tout $\overrightarrow{u} \in E$ et tout $\overrightarrow{v} \in E$, nous ayons $\langle \varphi(\overrightarrow{u}) | \varphi(\overrightarrow{v}) \rangle = \alpha \langle \overrightarrow{u} | \overrightarrow{v} \rangle$, et d'après 20.1.4, nous aurons démontré que φ est une similitude.

 \rightarrow Soit $\overrightarrow{x} \in E$ tel que $\overrightarrow{x} \neq \overrightarrow{0}$ et nous considérons :

$$\left\{ \begin{array}{ccc} \Phi : E & \longrightarrow & \mathbb{R} \\ y & \longmapsto & \Phi \left(y \right) = \left\langle \varphi \left(\overrightarrow{y} \right) \, \middle| \, \varphi \left(\overrightarrow{x} \right) \right\rangle \end{array} \right.$$

 \bullet Φ est une forme linéaire

Soient $y_1 \in E$, $y_2 \in E$, $\lambda \in \mathbb{R}$ et $\mu \in \mathbb{R}$. Alors:

$$\Phi(\lambda \overrightarrow{y_1} + \mu \overrightarrow{y_2}) = \langle \varphi(\lambda \overrightarrow{y_1} + \mu \overrightarrow{y_2}) | \varphi(\overrightarrow{x}) \rangle
= \langle \lambda \varphi(\overrightarrow{y_1}) + \mu \varphi(\overrightarrow{y_2}) | \varphi(\overrightarrow{x}) \rangle
= \lambda \langle \varphi(\overrightarrow{y_1}) | \varphi(\overrightarrow{x}) \rangle + \mu \langle \varphi(\overrightarrow{y_2}) | \varphi(\overrightarrow{x}) \rangle
= \lambda \Phi(\overrightarrow{y_1}) + \mu \Phi(\overrightarrow{y_2})$$

• $\{\overrightarrow{x}\}^{\perp} \subset \ker \Phi$

 $\begin{aligned} &Rappel: \{\overrightarrow{x}\}^{\perp} = \{\overrightarrow{y} \in E \text{ tels que } \langle \overrightarrow{y} \mid \overrightarrow{x} \rangle = 0\} \\ &\text{Soit } \overrightarrow{y} \in \{\overrightarrow{x}\}^{\perp}; \text{ alors } \langle \overrightarrow{y} \mid \overrightarrow{x} \rangle = 0. \end{aligned}$

 $\Phi(\overrightarrow{y}) = \langle \varphi(\overrightarrow{y}) | \varphi(\overrightarrow{x}) \rangle$; or, comme $\langle \overrightarrow{y} | \overrightarrow{x} \rangle = 0$, alors $\langle \varphi(\overrightarrow{y}) | \varphi(\overrightarrow{x}) \rangle = 0$, c'est à dire

Nous avons dons $\{\overrightarrow{x}\}^{\perp} \subset \ker \Phi$

Ce qui signifie que la forme linéaire est nulle sur l'ensemble $\{\overrightarrow{x}\}^{\perp}$

 \rightarrow Nous appelons $\Gamma(\{\overrightarrow{x}\})$ le sous-espace vectoriel de E engendré par le vecteur \overrightarrow{x} , c'est à dire :

$$\Gamma(\{\overrightarrow{x}\}) = \{\overrightarrow{y} \in E \text{ tel qu'il existe } \lambda \in \mathbb{R} \text{ tel que } \overrightarrow{y} = \lambda \overrightarrow{x}\}$$

Nous avons $E = \Gamma(\{\overrightarrow{x}\}) \oplus \{\overrightarrow{x}\}^{\perp}$, c'est à dire que tout $\overrightarrow{y} \in E$ peut s'écrire de manière unique $\overrightarrow{y} = \lambda \overrightarrow{x} + \overrightarrow{y}_1$ où $\overrightarrow{y}_1 \in \{\overrightarrow{x}\}^{\perp}$

• Pour tout $\overrightarrow{y} \in E$, $\overrightarrow{y} = \lambda \overrightarrow{x} + \overrightarrow{y}_1$ où $\overrightarrow{y}_1 \in \{\overrightarrow{x}\}^{\perp}$, nous avons $\Phi(\overrightarrow{y}) = \lambda \Phi(\overrightarrow{x})$ puisque la forme linéaire Φ est nulle sur $\{\overrightarrow{x}\}^{\perp}$ Nous avons :

$$\Phi\left(\overrightarrow{y}\right) = \lambda \Phi\left(\overrightarrow{x}\right) \Longleftrightarrow \left\langle \varphi\left(\overrightarrow{y}\right) \mid \varphi\left(\overrightarrow{x}\right) \right\rangle = \lambda \left\langle \varphi\left(\overrightarrow{x}\right) \mid \varphi\left(\overrightarrow{x}\right) \right\rangle = \lambda \left\| \varphi\left(\overrightarrow{x}\right) \right\|^{2}$$

• Comme $\Phi(\overrightarrow{y})$ il existe un nombre $\alpha_x \in \mathbb{R}^*$ tel que $\Phi(\overrightarrow{y}) = \alpha_x \langle \overrightarrow{y} \mid \overrightarrow{x} \rangle$ Nous avons :

$$\alpha_{x} \langle \overrightarrow{y} \mid \overrightarrow{x} \rangle = \alpha_{x} \langle \lambda \overrightarrow{x} + \overrightarrow{y}_{1} \mid \overrightarrow{x} \rangle = \alpha_{x} \lambda \langle \overrightarrow{x} \mid \overrightarrow{x} \rangle = \lambda \alpha_{x} \|\overrightarrow{x}\|^{2}$$

De l'égalité
$$\Phi(\overrightarrow{y}) = \lambda \|\varphi(\overrightarrow{x})\|^2 = \lambda \alpha_x \|\overrightarrow{x}\|^2$$
, nous tirons : $\alpha_x = \frac{\|\varphi(\overrightarrow{x})\|^2}{\|\overrightarrow{x}\|^2}$

Ainsi, pour tout $\overrightarrow{y} \in E$, nous avons $\langle \varphi(\overrightarrow{y}) | \varphi(\overrightarrow{x}) \rangle = \frac{\|\varphi(\overrightarrow{x})\|^2}{\|\overrightarrow{x}\|^2} \langle \overrightarrow{y} | \overrightarrow{x} \rangle$

- Nous allons démontrer que la quantité $\alpha_x = \frac{\|\varphi(\overrightarrow{x})\|^2}{\|\overrightarrow{x}\|^2}$ est constante et indépendante de \overrightarrow{x}
 - * Supposons 2 vecteurs $\overrightarrow{x}_1 \in E \setminus \left\{ \overrightarrow{0} \right\}$ et $\overrightarrow{x}_2 \in E \setminus \left\{ \overrightarrow{0} \right\}$ dépendants, c'est à dire que $\overrightarrow{x}_2 = \lambda \overrightarrow{x}_1$, alors, nous avons :

$$\alpha_{\overrightarrow{x}_{2}} = \frac{\|\varphi(\overrightarrow{x}_{2})\|^{2}}{\|\overrightarrow{x}_{2}\|^{2}}$$

$$= \frac{\|\varphi(\lambda\overrightarrow{x}_{1})\|^{2}}{\|\lambda\overrightarrow{x}_{1}\|^{2}}$$

$$= \frac{\|\lambda\varphi(\overrightarrow{x}_{1})\|^{2}}{\|\lambda\overrightarrow{x}_{1}\|^{2}}$$

$$= \frac{\lambda^{2}\|\varphi(\overrightarrow{x}_{1})\|^{2}}{\lambda^{2}\|\overrightarrow{x}_{1}\|^{2}}$$

$$= \frac{\|\varphi(\overrightarrow{x}_{1})\|^{2}}{\|\overrightarrow{x}_{1}\|^{2}}$$

$$= \alpha_{\overrightarrow{x}}$$

Nous avons donc $\alpha_{\overrightarrow{x}_2}=\alpha_{\overrightarrow{x}_1}$ et le nombre $\alpha_{\overrightarrow{x}}$ ne dépend pas du vecteur \overrightarrow{x}

* Soient, maintenant, $\overrightarrow{x}_1 \in E \setminus \{\overrightarrow{0}\}$ et $\overrightarrow{x}_2 \in E \setminus \{\overrightarrow{0}\}$ 2 vecteurs linéairement indépendants.

Alors, pour tout $\overrightarrow{y} \in E$, nous avons :

$$\begin{split} \langle \varphi \left(\overrightarrow{y} \right) \mid \varphi \left(\overrightarrow{x}_1 + \overrightarrow{x}_2 \right) \rangle &= & \alpha_{\left(\overrightarrow{x}_1 + \overrightarrow{x}_2 \right)} \left\langle \overrightarrow{y} \mid \overrightarrow{x}_1 + \overrightarrow{x}_2 \right\rangle \\ &= & \alpha_{\left(\overrightarrow{x}_1 + \overrightarrow{x}_2 \right)} \left\langle \overrightarrow{y} \mid \overrightarrow{x}_1 \right\rangle + \alpha_{\left(\overrightarrow{x}_1 + \overrightarrow{x}_2 \right)} \left\langle \overrightarrow{y} \mid \overrightarrow{x}_2 \right\rangle \\ &= & \langle \varphi \left(\overrightarrow{y} \right) \mid \varphi \left(\overrightarrow{x}_1 \right) \right\rangle + \langle \varphi \left(\overrightarrow{y} \right) \mid \varphi \left(\overrightarrow{x}_2 \right) \right\rangle \\ &= & \alpha_{\overrightarrow{x}_1} \left\langle \overrightarrow{y} \mid \overrightarrow{x}_1 \right\rangle + \alpha_{\overrightarrow{x}_2} \left\langle \overrightarrow{y} \mid \overrightarrow{x}_2 \right\rangle \end{split}$$

Ainsi, nous avons:

$$\begin{split} \alpha_{\left(\overrightarrow{x}_{1}+\overrightarrow{x}_{2}\right)}\langle\overrightarrow{y}\mid\overrightarrow{x}_{1}\rangle + \alpha_{\left(\overrightarrow{x}_{1}+\overrightarrow{x}_{2}\right)}\langle\overrightarrow{y}\mid\overrightarrow{x}_{2}\rangle &= \alpha_{\overrightarrow{x}_{1}}\langle\overrightarrow{y}\mid\overrightarrow{x}_{1}\rangle + \alpha_{\overrightarrow{x}_{2}}\langle\overrightarrow{y}\mid\overrightarrow{x}_{2}\rangle \\ \iff \\ \left(\alpha_{\left(\overrightarrow{x}_{1}+\overrightarrow{x}_{2}\right)} - \alpha_{\overrightarrow{x}_{1}}\right)\langle\overrightarrow{y}\mid\overrightarrow{x}_{1}\rangle + \left(\alpha_{\left(\overrightarrow{x}_{1}+\overrightarrow{x}_{2}\right)} - \alpha_{\overrightarrow{x}_{2}}\right)\langle\overrightarrow{y}\mid\overrightarrow{x}_{2}\rangle &= 0 \end{split}$$

En posant $\lambda_1 = \alpha_{(\overrightarrow{x}_1 + \overrightarrow{x}_2)} - \alpha_{\overrightarrow{x}_1}$ et $\lambda_2 = \alpha_{(\overrightarrow{x}_1 + \overrightarrow{x}_2)} - \alpha_{\overrightarrow{x}_2}$, nous pouvons écrire :

$$\begin{split} \left(\alpha_{\left(\overrightarrow{x}_{1}+\overrightarrow{x}_{2}\right)}-\alpha_{\overrightarrow{x}_{1}}\right)\langle\overrightarrow{y}\mid\overrightarrow{x}_{1}\rangle+\left(\alpha_{\left(\overrightarrow{x}_{1}+\overrightarrow{x}_{2}\right)}-\alpha_{\overrightarrow{x}_{2}}\right)\langle\overrightarrow{y}\mid\overrightarrow{x}_{2}\rangle=0\\ \Longleftrightarrow\\ \lambda_{1}\langle\overrightarrow{y}\mid\overrightarrow{x}_{1}\rangle+\lambda_{2}\langle\overrightarrow{y}\mid\overrightarrow{x}_{2}\rangle=0\\ \Longleftrightarrow\\ \langle\overrightarrow{y}\mid\lambda_{1}\overrightarrow{x}_{1}+\lambda_{2}\overrightarrow{x}_{2}\rangle=0 \end{split}$$

Ceci étant vrai pour tout $\overrightarrow{y} \in E$, nous avons $\lambda_1 \overrightarrow{x}_1 + \lambda_2 \overrightarrow{x}_2 = \overrightarrow{0}$ Les vecteurs \overrightarrow{x}_1 et \overrightarrow{x}_2 étant indépendants, alors $\lambda_1 = \lambda_2 = 0$ et donc

$$\lambda_1 = \alpha_{\left(\overrightarrow{x}_1 + \overrightarrow{x}_2\right)} - \alpha_{\overrightarrow{x}_1} = 0 \text{ et } \lambda_2 = \alpha_{\left(\overrightarrow{x}_1 + \overrightarrow{x}_2\right)} - \alpha_{\overrightarrow{x}_2} = 0$$

C'est à dire :

$$\alpha_{\left(\overrightarrow{x}_1 + \overrightarrow{x}_2\right)} = \alpha_{\overrightarrow{x}_1} = \alpha_{\overrightarrow{x}_2}$$

 α ne dépend donc pas du vecteur \overrightarrow{x}

Le nombre α est donc indépendant de $\overrightarrow{x} \in E$

Donc, il existe $\alpha > 0$ tel que pour tout $\overrightarrow{u} \in E$ et tout $\overrightarrow{v} \in E$, nous ayons $\langle \varphi(\overrightarrow{u}) | \varphi(\overrightarrow{v}) \rangle = \alpha \langle \overrightarrow{u} | \overrightarrow{v} \rangle$, et d'après 20.1.4, nous avons démontré que φ est une similitude.

20.1.8 Théorème

Soit E un \mathbb{R} -espace vectoriel euclidien. Alors, les similitudes conservent les angles non orientés, c'est à dire que, pour tout $\overrightarrow{u} \in E$, tout $\overrightarrow{v} \in E$ et toute similitude $\varphi \in \mathcal{S}im\left(E\right)$

$$\cos\left(\widehat{\overrightarrow{u}}, \widehat{\overrightarrow{v}}\right) = \cos\left(\widehat{\varphi\left(\overrightarrow{u}\right)}, \widehat{\varphi\left(\overrightarrow{v}\right)}\right)$$

Démonstration

Soient $\overrightarrow{u} \in E$, tout $\overrightarrow{v} \in E$ et $\varphi \in Sim(E)$, une similitude de rapport k > 0. Alors :

$$\cos\left(\widehat{\varphi\left(\overrightarrow{u}\right),\varphi\left(\overrightarrow{v}\right)}\right) = \frac{\langle \varphi\left(\overrightarrow{u}\right) \mid \varphi\left(\overrightarrow{v}\right) \rangle}{\|\varphi\left(\overrightarrow{u}\right)\| \times \|\varphi\left(\overrightarrow{v}\right)\|} = \frac{k^2 \langle \overrightarrow{u} \mid \overrightarrow{v} \rangle}{k \|\overrightarrow{u}\| \times k \|\overrightarrow{v}\|} = \frac{\langle \overrightarrow{u} \mid \overrightarrow{v} \rangle}{\|\overrightarrow{u}\| \times \|\overrightarrow{v}\|} = \cos\left(\widehat{\overrightarrow{u},\overrightarrow{v}}\right)$$