1.2 Classes suivant un sous-groupe

Soit G un groupe (non forcément commutatif), dont l'opération est notée multiplicativement, et $H \subset G$ un sous-ensemble de G. Dans cette section nous noterons, pour $x \in G$:

$$xH = \{y \in G \text{ où } y = xh \text{ avec } h \in H\} \text{ et } Hx = \{y \in G \text{ où } y = hx \text{ avec } h \in H\}$$

1.2.1Théorème

Soient G un groupe noté multiplicativement et $H \subset G$ un sous-groupe de G Nous considérons la relation ${}_H\mathcal{R}$ suivante :

$$(\forall x \in G) (\forall y \in G) ((x_H \mathcal{R} y) \iff (x^{-1} y \in H))$$

- 1. ${}_H\mathcal{R}$ est une relation d'équivalence
- 2. La classe d'équivalence \dot{x} d'un élément $x \in G$ est l'ensemble $\dot{x} = xH$
- 3. L'application φ_x ainsi définie :

$$\begin{cases}
\varphi_x : H & \longrightarrow & xH \\
h & \longmapsto & \varphi_x(h) = xh
\end{cases}$$

est une bijection

Démonstration

Nous appellerons e l'élément neutre de G

- 1. ${}_{H}\mathcal{R}$ est une relation d'équivalence
 - \rightarrow Elle est réflexive

Soit $x \in G$. Avons nous $x_H \mathcal{R} x$?

Nous avons $xx^{-1} = e$; comme H est un sous-groupe de $G, e \in H$ et donc $xx^{-1} \in H$, c'est à dire que nous avons $x_H \mathcal{R} x$ $_{H}\mathcal{R}$ est bien réflexive.

→ Elle est symétrique

Soient $x \in G$ et $y \in G$ tels que $x_H \mathcal{R} y$. Avons nous $y_H \mathcal{R} x$?

Nous avons, par définition $(x_H \mathcal{R} y) \iff (x^{-1} y \in H)$

Comme H est un sous-groupe, H contient l'inverse de tous ses éléments. Ainsi, si $x^{-1}y \in H$, alors $(x^{-1}y)^{-1} \in H$.

Comme $(x^{-1}y)^{-1} = y^{-1}x$, nous avons donc $y^{-1}x_inH$ et donc $y_H \mathcal{R} x$ $_{H}\mathcal{R}$ est bien symétrique

 \rightarrow Elle est transitive

Soient $x \in G$, $y \in G$ et $z \in G$ tels que $x_H \mathcal{R} y$ et $y_H \mathcal{R} z$. Avons nous $x_H \mathcal{R} z$?

Nous avons, par définition $(x_H \mathcal{R} y) \iff (x^{-1} y \in H)$ et $(y_H \mathcal{R} z) \iff (y^{-1} z \in H)$

Comme H est un sous-groupe, la composition déléments de H est interne. Ainsi, si $x^{-1}y \in H$ et $y^{-1}z \in H$, alors $(x^{-1}y)(y^{-1}z) \in H$. Or, $(x^{-1}y)(y^{-1}z) = x^{-1}z$ et donc $x^{-1}z \in H$ d'où $x_H \mathcal{R} z$

 $_{H}\mathcal{R}$ est bien transitive

La relation ${}_{H}\mathcal{R}$ est bien une relation d'équivalence.

2. La classe d'équivalence \dot{x} d'un élément $x \in G$ est l'ensemble $\dot{x} = xH$

Soit $y \in \dot{x}$; alors $x^{-1}y \in H$ et donc il existe $h \in H$ tel que $x^{-1}y = h \iff y = xh$, ce qui veut dire que $y \in xH$. Donc $\dot{x} \subset xH$

Réciproquement, soit $y \in xH$; il existe $h \in H$ tel que y = xh et donc $x^{-1}y = h \in H$, ce qui veut dire que $x_H \mathcal{R} y$ et que $y \in \dot{x}$. Ce qui veut dire que $xH \subset \dot{x}$

Et donc $xH = \dot{x}$

3. L'application φ_x est bijective

 \rightarrow Elle est injective

Soient $h_1 \in H$ et $h_2 \in H$ tels que $\varphi_x(h_1) = \varphi_x(h_2)$.

Alors $xh_1 = xh_2$ et donc $h_1 = h_2$. φ_x est donc injective

 \rightarrow Elle est surjective

Soit $y \in xH$; il existe alors $h \in H$ tel que y = xh, et donc $\varphi_x(h) = y$. φ_x est donc surjective L'application φ_x est donc bijective.

Remarque 3:

- 1. Du théorème 1.2.1 ci-dessus, nous tirons que, si G est d'ordre fini, H l'est aussi et $\operatorname{Card} H = \operatorname{Card} xH$
- 2. $_{H}\mathcal{R}$ est la relation d'équivalence à gauche
- 3. Nous définirions, et avec des résultats semblables, une relation d'équivalence à droite \mathcal{R}_H définie par :

$$(\forall x \in G) (\forall y \in G) ((x\mathcal{R}_H y) \iff (xy^{-1} \in H))$$

La classe d'équivalence \dot{x} d'un élément $x \in G$ devient alors $\dot{x} = Hx$

- 4. (a) Les ensembles de la forme xH sont appelés les classes à gauche
 - (b) Les ensembles de la forme Hx sont appelés les classes à droite
 - (c) Dans un groupe commutatif, il n'y pas lieu de différencier les classes à gauche ou les classes à droite. On parle alors, plus simplement, de classes suivant le sous-groupe H
- 5. Comme d'habitude, nous notons $G/H\mathcal{R}$ l'ensemble des classes d'équivalence à gauche et G/\mathcal{R}_H l'ensemble des classes d'équivalences à droite. On note souvent :

$$G/_H \mathcal{R} = (G/H)_g$$
 et $G/\mathcal{R}_H = (G/H)_d$

- 6. Il est clair que si G est un groupe commutatif, alors ${}_{H}\mathcal{R}=\mathcal{R}_{H}=\mathcal{R}$; l'ensemble des classes d'équivalence est noté G/H
- 7. Il est aussi très facile de démontrer que $\dot{e}=H$
- 8. Il est clair, aussi, que nous avons, la plupart du temps $xH \neq Hx$

Exemple 2:

- 1. Si H=G, il n'y a qu'une seule classe d'équivalence et $(G/H)_{q}=(G/H)_{d}=G$
- 2. Autre exemple si $H = \{e\}$, alors la relation \mathcal{R}_H devient

$$(x\mathcal{R}_H y) \iff (xy^{-1} = e) \iff (x = y)$$

C'est à dire que la relation \mathcal{R}_H est la relation d'égalité; il en est de même de ${}_H\mathcal{R}$

- 3. l'exemple le plus canonique est celui du groupe additif $(\mathbb{Z},+)$ des nombres relatifs. Tous les sous-groupes de $(\mathbb{Z},+)$ sont du type $n\mathbb{Z}$ avec $n \in \mathbb{N}^*$.
 - La relation \mathcal{R} définie par $x\mathcal{R}y \Longleftrightarrow x-y \in n\mathbb{Z}$ est la relation de congruence. La classe d'équivalence d'un entier $x \in \mathbb{Z}$ est donnée par $\dot{x} = x + n\mathbb{Z} = \{\cdots x 2n, x_n, x, x + n, x + 2n, \cdots x + kn\}$

Exercice 16:

Nous considérons (\mathbb{C}^* , \times) le groupe multiplicatif des nombres complexes et \mathcal{U} le sous-groupe des nombres complexes de module 1. Quelles sont les classes d'équivalence modulo \mathcal{U} ?

Exercice 17:

Soit G un groupe cyclique d'ordre 12. Montrer qu'il existe un sous-groupe H d'ordre 4 et un seul. Déterminer alors l'ensemble des classes à gauche G/H.

1.2.2 Le théorème de Lagrange

Soit G un groupe fini et $H \subset G$, un sous-groupe de G Alors, l'ordre de H divise l'ordre de G

Démonstration

L'opération interne du groupe G est notée multiplicativement.

Soit ${}_H\mathcal{R}$ la relation d'équivalence à gauche modulo le sous-groupe H. Les classes d'équivalence $xH \in (G/H)_g$ forment une partition de G. D'après 1.2.1, toutes ces classes d'équivalence ont le même nombre d'éléments que H.

Comme
$$G = \bigcap_{x \in G} xH$$
, nous avons $\operatorname{Card} G = \sum_{x \in G} \operatorname{Card} H$, c'est à dire $\operatorname{Card} G = p\operatorname{Card} H$

Ce que nous voulions

Remarque 4:

On dit souvent:

Dans un groupe fini, l'ordre d'un sous-groupe divise l'ordre du groupe

1.2.3 Corollaire

Dans un groupe G d'ordre p nombre premier, les seuls sous-groupes sont G et $\{e\}$

Démonstration

La démonstration est simple.

Si $H \subset G$ est un sous-groupe de G, alors $\operatorname{Card} H$ est un nombre qui divise p. Ainsi, $\operatorname{Card} H = 1$ ou $\operatorname{Card} H = p$, c'est à dire H = G ou $H = \{e\}$

Exercice 18:

Montrer qu'un groupe fini d'ordre un nombre p premier est cyclique (et donc commutatif).

Exercice 19:

Soient S_1 et S_2 deux sous-groupes finis d'un groupe G d'ordres respectifs n_1 et n_2 . Montrer que si n_1 est premier avec n_2 alors $S_1 \cap S_2 = \{e\}$.

Exercice 20:

Montrer que si deux éléments d'un groupe ont des ordres finis premiers entre eux, l'intersection des sous-groupes qu'ils engendrent est réduite au singleton $\{e\}$.