3.6 Espaces vectoriels de dimension finie

3.6.1 Définition

On dit qu'un K-espace vectoriel E est de dimension finie s'il admet une famille génératrice finie

Exemple 8:

1. \mathbb{R}^2 admet pour famille génératrice $\{(1,0);(0,1)\}$ ou $\{(1,2);(3,4);(5,6)\}$

En effet:

- (a) Soit $(x, y) \in \mathbb{R}^2$; alors (x, y) = x(1, 0) + y(0, 1); on peut même, et facilement, démontrer que $\{(1, 0); (0, 1)\}$ est une famille libre de \mathbb{R}^2 et que c'est donc une base de \mathbb{R}^2
- (b) La famille $\{(1,2);(3,4);(5,6)\}$ est génératrice, puisque tout $(x,y)\in\mathbb{R}^2$ peut s'écrire :

$$(x,y) = (-2x+y)(1,2) + (x + \frac{1}{2}y)(3,4) - \frac{1}{2}y(5,6)$$

Ou encore

$$(x,y) = \left(-2x + \frac{3}{2}y + 1\right)(1,2) + \left(x - \frac{1}{2}y - 2\right)(3,4) + (5,6)$$

On remarque que la « décomposition » n'est pas unique.

Il n'y a rien de plus normal, puisque la famille $\{(1,2);(3,4);(5,6)\}$ est liée : nous avons, en effet :

$$-(1,2) + 2(3,4) = (5,6)$$

Si elle est génératrice, la famille $\{(1,2);(3,4);(5,6)\}$ ne forme pas une base.

- 2. Plus généralement, si \mathbb{K} est un corps, \mathbb{K}^n est un \mathbb{K} -espace vectoriel de dimension finie puisque la famille $\{e_i; i=1,\cdots,n\}$ où $e_i=(0,0,\cdots,0,1,0,\cdots,0)$ et le 1 placé en *i*-ième place, engendre \mathbb{K}^n
- 3. Par contre, $\mathbb{K}[X]$ n'est pas un \mathbb{K} -espace vectoriel de dimension finie. Si la famille $\{X^n; n \in \mathbb{N}\}$ est une base de $\mathbb{K}[X]$, toute partie finie de $\mathbb{K}[X]$ ne peut générer qu'un sous-espace vectoriel formé de polynômes qui ont leur degré borné.

3.6.2 Théorème

Soit E un \mathbb{K} -espace vectoriel de dimension finie

Soit $G = \{x_1, \dots, x_m\}$ une famille génératrice de E.

Alors, de cette famille génératrice G, on peut en extraire une base

Démonstration

Nous allons faire cette démonstration par récurrence sur $m \in \mathbb{N}^*$, en posant :

 $P\left(m\right)$: « Si E admet une famille génératrice G de cardinal m, alors, de G, on peut extraire une base »

- \triangleright Si m=1, alors $G=\{x_1\}$
 - * Si $x_1 = 0_E$, alors $E = \{0_E\}$
 - \star Si $x_1\neq 0_E,$ alors, G étant une famille génératrice de E est aussi une famille libre de E, donc une base de E
- \triangleright Si m = 2, alors $G = \{x_1, x_2\}$
 - * Si la famille $G = \{x_1, x_2\}$ est libre, alors, comme elle est aussi génératrice de E, elle en forme aussi une base
- * Si la famille $G = \{x_1, x_2\}$ est liée,, alors, par exemple, x_2 est colinéaire à x_1 ($x_2 = \lambda x_1$ avec $\lambda \in \mathbb{K}$), et de la famille $G = \{x_1, x_2\}$, on peut extraire une base qui sera $\{x_1\}$
- \triangleright Supposons maintenant P(m) vraie
- \triangleright Démontrons, maintenant P(m+1)

Soit donc $G = \{x_1, x_2, \dots, x_m, x_{m+1}\}$ une famille génératrice de E

- * Si la famille $G = \{x_1, x_2, \cdots, x_m, x_{m+1}\}$ est libre, alors, comme elle est aussi génératrice de E, elle en forme aussi une base.
- \star Si la famille $G=\{x_1,x_2,\cdots,x_m,x_{m+1}\}$ est liée,, alors, l'un des vecteurs de G s'écrit comme combinaison linéaire des autres vecteurs de G. Quitte à ré-ordonner, admettons que ce soit x_{m+1} qui soit combinaison linéaire des $\{x_1, x_2, \cdots, x_m\}$.

Alors, la famille $G_1 = \{x_1, x_2, \cdots, x_m\}$, à m éléments, est aussi génératrice de E. En utilisant l'hypothèse de récurrence P(m), de cette famille G_1 , on peut extraire une base de E

D'où le théorème est démontré

Remarque 18:

1. Une autre façon de le dire est celle-ci :

Dans un \mathbb{K} -espace vectoriel de dimension finie E, de toute famille génératrice, on peut extraire une base finie

Ainsi, tout K-espace vectoriel de dimension finie admet une base finie

2. De ce théorème, on peut aussi déduire que si $G = \{x_1, \dots, x_m\}$ une famille génératrice de E et $B = \{y_1, \cdots, y_n\}$ une base de E, alors $n \leqslant m$

3.6.3 Lemme

La démonstration de ce lemme sera utile à la démonstration du théorème 3.6.4

```
Soient E un \mathbb{K}-espace vectoriel et n \in \mathbb{N}^*
On considère n+1 vecteurs de E\{x_1, x_2, \cdots, x_n, x_{n+1}\} qui sont combinaison linéaire de n autres vecteurs
\{u_1,u_2,\cdots,u_n\} de E
Alors la famille \{x_1, x_2, \cdots, x_n, x_{n+1}\} est aussi une famille liée
```

Démonstration

On remarquera que E n'est pas spécifié de dimension finie.

Nous démontrons ce théorème par récurrence sur n en démontrant la propriété P(n) suivante.

 $P(n): \ll \text{Si } n+1$ vecteurs de $E\{x_1, x_2, \cdots, x_n, x_{n+1}\}$ sont combinaison linéaire de n autres vecteurs $\{u_1, u_2, \dots, u_n\}$ de E alors la famille $\{x_1, x_2, \dots, x_n, x_{n+1}\}$ forme aussi une famille liée ≫

1. Vérifions pour n=1

Soient donc 2 vecteurs de $E\{x_1, x_2\}$ qui sont combinaison linéaire d'un vecteur $u \in E$.

Il existe alors $\lambda_1 \in \mathbb{K}$ et $\lambda_2 \in \mathbb{K}$ tels que $x_1 = \lambda_1 u$ et $x_2 = \lambda_2 u$

- ▷ Si $\lambda_1 = 0$ ou $\lambda_2 = 0$, alors $x_1 = 0_E$ ou $x_2 = 0_E$ et la famille $\{x_1, x_2\}$ est bien liée ▷ Si $\lambda_1 \neq 0$ et $\lambda_2 \neq 0$, alors, par exemple, $u = \frac{1}{\lambda_2} x_2$, et donc $x_1 = \frac{\lambda_1}{\lambda_2} x_2$ et la famille $\{x_1, x_2\}$ est bien liée

P(1) est donc bien vérifiée

- 2. Supposons maintenant P(n) vraie
- 3. Démontrons P(n+1)

Soient n+2 vecteurs $\{x_1, x_2, \cdots, x_n, x_{n+1}, x_{n+2}\}$ qui sont combinaisons linéaires de n+1 vecteurs $\{u_1, u_2, \cdots, u_n, u_{n+1}\}\ de\ E.$

Il existe donc des scalaires $\alpha_{i,j}$ où $1 \le i \le n+2$ et $1 \le j \le n+1$ tels que :

$$\begin{cases} x_1 = & \alpha_{1,1}u_1 + \alpha_{1,2}u_2 + \dots + \alpha_{1,n+1}u_{n+1} \\ x_2 = & \alpha_{2,1}u_1 + \alpha_{2,2}u_2 + \dots + \alpha_{2,n+1}u_{n+1} \\ x_3 = & \alpha_{3,1}u_1 + \alpha_{3,2}u_2 + \dots + \alpha_{3,n}u_{n+1} \\ \vdots & & \vdots \\ x_{n+1} = & \alpha_{n+1,1}u_1 + \alpha_{n+1,2}u_2 + \dots + \alpha_{n+1,n+1}u_{n+1} \\ x_{n+2} = & \alpha_{n+2,1}u_1 + \alpha_{n+2,2}u_2 + \dots + \alpha_{n+2,n+1}u_{n+1} \end{cases}$$

 \triangleright Supposons que pour tout i tel que $1 \le i \le n+2$, nous ayions $\alpha_{i,n+1}=0$, alors, nous avons :

$$\begin{cases} x_1 = & \alpha_{1,1}u_1 + \alpha_{1,2}u_2 + \dots + \alpha_{1,n}u_n \\ x_2 = & \alpha_{2,1}u_1 + \alpha_{2,2}u_2 + \dots + \alpha_{2,n}u_n \\ x_3 = & \alpha_{3,1}u_1 + \alpha_{3,2}u_2 + \dots + \alpha_{3,n}u_n \\ \vdots & \vdots \\ x_{n+1} = & \alpha_{n+1,1}u_1 + \alpha_{n+1,2}u_2 + \dots + \alpha_{n+1,n}u_n \end{cases}$$

Ce qui montre que la famille $\{x_1, x_2, \cdots, x_n, x_{n+1}\}$ est combinaison linéaire des n vecteurs $\{u_1, u_2, \cdots, u_n\}$ de E et donc, d'après l'hypothèse de récurrence P(n), la famille $\{x_1, x_2, \cdots, x_n, x_{n+1}\}$ est liée et, à fortiori, $\{x_1, x_2, \cdots, x_n, x_{n+1}, x_{n+2}\}$ est aussi liée.

 \triangleright Supposons qu'il existe i_0 tel que $1 \leqslant i_0 \leqslant n+2$ tel que nous ayions $\alpha_{i_0,n+1} \neq 0$. Quitte à ré-ordonner, pour simplifier la démonstration, nous supposons $\alpha_{n+2,n+1} \neq 0$. Alors, dans ce cas :

$$u_{n+1} = \frac{1}{\alpha_{n+2,n+1}} x_{n+2} - \frac{\alpha_{n+2,1}}{\alpha_{n+2,n+1}} u_1 - \frac{\alpha_{n+2,2}}{\alpha_{n+2,n+1}} u_2 - \dots - \frac{\alpha_{n+2,n}}{\alpha_{n+2,n+1}} u_n$$

En remplaçant u_{n+1} dans les n+1 vecteurs $\{x_1, x_2, \cdots, x_n, x_{n+1}\}$, nous obtenons :

$$\begin{cases} x_1 - \frac{1}{\alpha_{n+2,n+1}} x_{n+2} = & \lambda_{1,1} u_1 + \lambda_{1,2} u_2 + \dots + \lambda_{1,n} u_n \\ x_2 - \frac{1}{\alpha_{n+2,n+1}} x_{n+2} = & \lambda_{2,1} u_1 + \lambda_{2,2} u_2 + \dots + \lambda_{2,n} u_n \\ x_3 - \frac{1}{\alpha_{n+2,n+1}} x_{n+2} = & \lambda_{3,1} u_1 + \lambda_{3,2} u_2 + \dots + \lambda_{3,n} u_n \\ & \vdots & \vdots \\ x_{n+1} - \frac{1}{\alpha_{n+2,n+1}} x_{n+2} = & \lambda_{n+1,1} u_1 + \lambda_{n+1,2} u_2 + \dots + \lambda_{n+1,n} u_n \end{cases}$$

Où, pour $1 \leqslant i \leqslant n+1$ et $1 \leqslant j \leqslant n$, nous avons $\lambda_{i,j} = \alpha_{i,j} - \frac{\alpha_{n+2,j}}{\alpha_{n+2,n+1}}$

Les n+1 vecteurs $x_i - \frac{1}{\alpha_{n+2,n+1}} x_{n+2}$ où $1 \le i \le n+1$ sont donc combinaisons linéaires des n vecteurs $\{u_1, u_2, \cdots, u_n\}$ et, d'après l'hypothèse de récurrence P(n), la famille

$$\left\{x_1 - \frac{1}{\alpha_{n+2,n+1}}x_{n+2}, x_2 - \frac{1}{\alpha_{n+2,n+1}}x_{n+2}, \cdots, x_n - \frac{1}{\alpha_{n+2,n+1}}x_{n+2}, x_{n+1} - \frac{1}{\alpha_{n+2,n+1}}x_{n+2}\right\}$$

est liée.

Il existe donc des scalaires $\beta_i \in \mathbb{K}$ avec $1 \leq i \leq n+1$ non tous nuls tels que

$$\sum_{i=1}^{n+1} \beta_i \left(x_i - \frac{1}{\alpha_{n+2,n+1}} x_{n+2} \right) = 0_E$$

Et donc:

$$\sum_{i=1}^{n+1} \beta_i \left(x_i - \frac{1}{\alpha_{n+2,n+1}} x_{n+2} \right) = 0_E \Longleftrightarrow \sum_{i=1}^{n+1} \beta_i x_i - \left(\sum_{i=1}^{n+1} \frac{\beta_i}{\alpha_{n+2,n+1}} \right) x_{n+2} = 0_E$$

Avec des β_i non tous nuls, ce qui montre que la famille $\{x_1, x_2, \cdots, x_n, x_{n+1}, x_{n+2}\}$ est une famille liée.

Le lemme est démontré

3.6.4 Théorème

Soit E un \mathbb{K} -espace vectoriel de dimension finie

Alors, toutes les bases de E ont le même nombre d'éléments.

Ce nombre est appelé la dimension de E et est noté $\dim E$

Démonstration

Soient $\mathcal{B} = \{x_1, x_2, \dots, x_n, \}$ et $\mathcal{B}_1 = \{y_1, y_2, \dots, y_m, \}$ 2 bases de E.

 \mathcal{B} est une famille génératrice de E, et donc, chacun des vecteurs de \mathcal{B}_1 s'écrit comme combinaison linéaire des vecteurs de \mathcal{B} .

Nous avons $n \leq m$

En effet, supposons n > m.

D'après le lemme 3.6.3, ceci signifierait que la famille \mathcal{B}_1 est une famille liée, ce qui est contradictoire avec le fait que \mathcal{B}_1 est une base.

Donc $n \leq m$

De même, on montre que $m \leq n$.

Donc m = n

Remarque 19:

Si E est un \mathbb{K} -espace vectoriel réduit au vecteur nul, c'est à dire si $E = \{0_E\}$, nous convenons alors que dim E = 0

Exemple 9:

- 1. \mathbb{K}^n est un \mathbb{K} -espace vectoriel de dimension n, puisque nous en connaissons une base de cardinal n, la base canonique
- 2. Si E est un \mathbb{K} -espace vectoriel de dimension 1, alors E un \mathbb{K} -espace vectoriel qui admet pour base un seul vecteur non nul; c'est une roite vectorielle

3.6.5 Théorème de la base incomplète

```
Soit E un \mathbb{K}-espace vectoriel de dimension finie.
Soit H=\{h_1,h_2,\ldots,h_m\} un système libre de E et soit \mathcal{B}=\{e_1,e_2,\ldots,e_n\} une base de E.
Alors H peut être complétée par (n-m) vecteurs \{x_{m+1},\cdots,x_n\} de telle sorte que la famille \{h_1,h_2,\ldots,h_m,x_{m+1},\cdots,x_n\} forme une base de E
```

Démonstration

Soient $H = \{h_1, h_2, \dots, h_m\}$ une famille libre de E et $\mathcal{B} = \{e_1, e_2, \dots, e_n\}$ une base de E

- \diamond Si H est une famille génératrice de E, alors H est une base de E, et c'est terminé
- \diamond Si, cette fois ci, H n'est pas une famille génératrice de E. Considérons Vect $(\{h_1, h_2, \ldots, h_m\})$ le sous-espace vectoriel engendré par H. Nous disons qu'il existe un indice i_0 , avec $1 \leq i_0 \leq n$ tel que $e_{i_0} \notin \text{Vect}(\{h_1, h_2, \ldots, h_m\})$

Sinon,

Supposons que pour tout i avec $1 \le i \le n$ tel que $e_i \in \text{Vect}(\{h_1, h_2, \dots, h_m\})$, ceci sousentend que la la famille H est génératrice (donc base) de E, et il y a donc contradiction.

Alors, la famille $H \cup \{e_{i_0}\} = \{h_1, h_2, \dots, h_m, e_{i_0}\}$ forme une famille libre car e_{i_0} n'est pas combinaison linéaire des vecteurs de la famille H

- \diamond Si la famille $H \cup \{e_{i_0}\}$ est génératrice, c'est donc une base et nous nous arrêtons. Si elle ne l'est pas, nous itérons le processus.
- Ce processus s'arrêtera sûrement et nous obtiendrons une famille libre et génératrice donc une base.

Si ce processus ne s'arrêtait pas, nous obtiendrions, au final, une famille $H \cup \mathcal{B}$ qui serait génératrice, mais pas libre.

Remarque 20:

- 1. Le théorème signifie que si on a une famille libre de E, on peut la compléter pour obtenir une base de E, d'où le nom de base incomplète.
- 2. Soit E un \mathbb{K} -espace vectoriel de dimension n. Alors :
 - (a) Les familles libres de E ont au plus n éléments
 - (b) Si une famille libre de E est de cardinal n, alors, c'est une base de E
- 3. D'après la démonstration du théorème, pour compléter une famille libre de E pour en faire une base, nous pouvons la compléter en prenant des éléments dans une base de E fixée d'avance.
- 4. Soit E un \mathbb{K} -espace vectoriel de dimension n. Alors :
 - (a) Les familles génératrices de E ont **au moins** n éléments
 - (b) Si une famille génératrice de E est de cardinal n, alors, c'est une base de E
- 5. La dimension d'un \mathbb{K} -espace vectoriel est le nombre minimum de vecteurs générateurs et le nombre maximum de vecteurs libres
- 6. La dimension d'un \mathbb{K} -espace vectoriel dépend du corps de base, c'est pourquoi nous notons souvent la dimension $\dim_{\mathbb{K}} E$ et la référence au corps \mathbb{K} est enlevée lorsqu'il n'y a pas ambiguité

Exemples

Nous avons $\dim_{\mathbb{R}} \mathbb{C} = 2$ et $\dim_{\mathbb{C}} \mathbb{C} = 1$

7. Nous avons, si E est un \mathbb{K} -espace vectoriel de dimension finie : $E \neq \{0_E\} \iff \dim_{\mathbb{K}} E \geqslant 1$

3.6.6 Définition

Soit E un \mathbb{K} -espace vectoriel de dimension finie n. Alors :

- 1. On appelle **droite** sous-espace vectoriel de E de dimension 1
- 2. On appelle **plan** sous-espace vectoriel de E de dimension 2
- 3. On appelle **hyperplan** sous-espace vectoriel de E de dimension n-1

Remarque 21:

On peut remarquer que dans un \mathbb{K} -espace vectoriel de dimension 3, plans et hyperplans sont identiques alors que si $n \neq 3$, ces 2 notions sont distinctes.

Exemple 10:

- 1. Nous avons $\dim_{\mathbb{R}} \mathbb{R}^2 = 2$, et plus généralement, \mathbb{K}^n est un \mathbb{K} -espace vectoriel de dimension n sur \mathbb{K} . Ainsi, tout corps \mathbb{K} est un \mathbb{K} -espace vectoriel de dimension 1 sur lui-même.
- 2. $\mathbb{K}_n[X]$ est un \mathbb{K} -espace vectoriel de dimension n+1 sur \mathbb{K} . Une base de $\mathbb{K}_n[X]$ est donnée par $\{1, X, X^2, \cdots, X^n\}$
- 3. \mathbb{R} peut être considéré comme \mathbb{Q} -espace vectoriel; ce n'est sûrement pas un \mathbb{Q} -espace vectoriel de dimension 1.

En effet, la famille $\{1, \sqrt{2}\}$ forme une famille libre.

Démontrons le :

Soient $a \in \mathbb{Q}$ et $b \in \mathbb{Q}$ tels que $a + b\sqrt{2} = 0$;

Si a = b = 0, nous avons bien entendu $a + b\sqrt{2} = 0$

Sinon supposons $a \neq 0$ ou $b \neq 0$.

 \star Si $a\neq 0,$ alors $b\neq 0$ et :

$$a + b\sqrt{2} = 0 \iff b\sqrt{2} = -a \iff \sqrt{2} = \frac{-a}{b}$$

Comme $a \in \mathbb{Q}$ et $b \in \mathbb{Q}$, alors $\sqrt{2} = \frac{-a}{b} \in \mathbb{Q}$, ce qui est impossible

 \star Si $b\neq 0,$ alors, nous avons, à nouveau :

$$a + b\sqrt{2} = 0 \Longleftrightarrow b\sqrt{2} = -a \Longleftrightarrow \sqrt{2} = \frac{-a}{b}$$

Et la conclusion est identique

La seule possibilité que nous ayions est a=b=0 et donc la famille $\left\{1,\sqrt{2}\right\}$ forme une famille libre dans le \mathbb{Q} -espace vectoriel \mathbb{R}

Exercice 27:

- 1. Démontrer que pour tout $n \in \mathbb{N}$, si $\sqrt{n} \notin \mathbb{N}$, alors $\sqrt{n} \notin \mathbb{Q}$
- 2. Démontrer que, pour tout $\alpha \in \mathbb{Q}$, tout $\beta \in \mathbb{Q}$ et tout $n \in \mathbb{N}$ tel que $\sqrt{n} \notin \mathbb{Q}$, nous avons l'implication :

$$\alpha + \beta \sqrt{n} = 0 \Longrightarrow \alpha = \beta = 0$$

3. Démontrer que la famille $\left\{1,\sqrt{2},\sqrt{3}\right\}$ est une famille libre dans le $\mathbb Q$ -espace vectoriel $\mathbb R$

3.6.7 Théorème

Soit E un \mathbb{K} -espace vectoriel de dimension n; alors E est isomorphe à \mathbb{K}^n

Démonstration

Soit $\{e_1, \dots, e_n\}$ une base de E et $\{\varepsilon_1, \dots, \varepsilon_n\}$ la base canonique de \mathbb{K}^n .

On appelle $\Phi: E \longrightarrow \mathbb{K}$ l'unique application linéaire définie par $\Phi(e_i) = \varepsilon_i$. Comme $\{\varepsilon_1, \dots, \varepsilon_n\}$ est une base de \mathbb{K}^n , Φ est bien un isomorphisme de E dans \mathbb{K}^n

Remarque 22:

De cet isomorphisme, on peut dire que les seuls \mathbb{K} -espaces vectoriels de dimension n sont les \mathbb{K}^n

3.6.8 Théorème

Soit E un \mathbb{K} -espace vectoriel de dimension n et F un sous-espace vectoriel de E. Alors :

- 1. F est de dimension finie et $\dim F \leq n$
- 2. Si dim F = n, alors F = E

Démonstration

- 1. Soit F un sous-espace vectoriel de E et $\{u_1, \dots, u_p\}$ une famille libre de p éléments de F; c'est, en particulier une famille libre de E.
 - Cette remarque s'applique évidemment si $\{u_1, \cdots, u_p\}$ est une base de F et donc dim $F \leq n$
- 2. Si p=n, c'est à dire, si $\{u_1, \dots, u_n\}$ est une base de F, c'est aussi une base de E, et donc F=E

3.6.9 Proposition

Soit E un \mathbb{K} -espace vectoriel de dimension finie n. Alors, tout sous-espace vectoriel $F \subset E$ admet, dans E un supplémentaire G, c'est à dire $E = F \bigoplus G$ et ce supplémentaire G n'est, en général, pas unique

Démonstration

Soit F un sous-espace vectoriel de E

- \implies Si F = E, alors le supplémentaire de F est alors $G = \{0_E\}$
- \implies Et vice-versa, si $F = \{0_E\}$ alors le supplémentaire de F est alors E

 \implies Supposons, maintenant F de dimension finie p avec $1 \leqslant p < n.$

Soit $\mathcal{B} = \{u_1, \dots, u_p\}$ une base de F. C'est aussi une famille libre de E. D'après le théorème de la base incomplète 3.6.5, il existe des vecteurs $\{u_{p+1}, \dots, u_n\}$ indépendants de telle sorte que la famille $\mathcal{F} = \{u_1, \dots, u_p, u_{p+1}, \dots, u_n\}$ forme une base de E.

Nous appelons $G = \text{Vect}(\{u_{p+1}, \dots, u_n\})$, et nous disons que G est un supplémentaire de F dans G, c'est à dire que $E = F \bigoplus G$.

En effet :

• Tout vecteur $u \in E$ se décompose en u = x + y où $x \in F$ et $x \in G$

En effet, si $u \in E$, alors u se décompose de manière unique dans la base $\mathcal{F} : u = \sum_{i=1}^{n} \lambda_i u_i$. Or,

nous pouvons écrire:

$$u = \sum_{i=1}^{n} \lambda_i u_i = \underbrace{\sum_{i=1}^{p} \lambda_i u_i}_{\in F} + \underbrace{\sum_{i=p+1}^{n} \lambda_i u_i}_{\in G}$$

Ainsi, tout élément $u \in E$ est donc la somme d'un vecteur de F et d'un vecteur de G^1

• Nous avons $F \cap G = \{0_E\}$

En effet, soit $x \in F \cap G$. Alors, $x = \sum_{i=1}^{p} \lambda_i u_i$ et $x = \sum_{i=p+1}^{n} \lambda_i u_i$ de telle sorte que nous ayions :

$$x = \sum_{i=1}^{p} \lambda_i u_i = \sum_{i=p+1}^{n} \lambda_i u_i \Longleftrightarrow \sum_{i=1}^{p} \lambda_i u_i - \sum_{i=p+1}^{n} \lambda_i u_i = 0_E \Longleftrightarrow \lambda_1 u_1 + \dots + \lambda_p u_p - \lambda_{p+1} u_{p+1} - \dots - \lambda_n u_n = 0_E$$

De l'indépendance des vecteurs de la famille \mathcal{F} , nous déduisons $\lambda_1 = \cdots = \lambda_p = \lambda_{p+1} = \cdots = \lambda_n = 0$ d'où nous tirons $x = 0_E$

Et nous déduisons donc que $F \cap G = \{0_E\}$

D'où nous tirons que $E=F\bigoplus G$

Du choix des vecteurs $\{u_{p+1}, \dots, u_n\}$, on déduit bien que le choix de G n'est pas unique.

3.6.10 Rang d'une famille de vecteurs

Soit E un \mathbb{K} -espace vectoriel et $\mathcal{F} = \{x_1, \cdots, x_n\}$ une famille de n vecteurs de E Le **rang** de \mathcal{F} est la dimension de $\mathrm{Vect}(\{x_1, \cdots, x_n\})$

$$\operatorname{rang}(\mathcal{F}) = \dim\left(\operatorname{Vect}\left(\left\{x_1, \cdots, x_n\right\}\right)\right)$$

Exemple 11:

1. Considérons, dans le \mathbb{R} -espace vectoriel \mathbb{R}^3 , la famille $\mathcal{F} = \{u_1, u_2, u_3\}$ où $u_1 = (1, 2, 3), u_2 = (4, 5, 6), u_3 = (7, 8, 9).$

Par calcul simple et évident, nous avons $u_2 = \frac{1}{2}(u_1 + u_3)$ et, comme les vecteurs u_1 et u_3 sont linéairement indépendants, nous avons rang $(\mathcal{F}) = \dim (\operatorname{Vect}(\{u_1, u_2, u_3\})) = 2$

2. Dans le \mathbb{R} -espace vectoriel \mathbb{R}^4 , la famille de 5 vecteurs

$$\mathcal{F} = \{(1,0,0,0), (0,1,0,0), (0,0,1,0), (49,6,3,0), (-5,3,-1,0)\}$$

est de rang 3

3. Considérons cette fois-ci $E=\mathcal{F}\left(\mathbb{R},\mathbb{R}\right)$ le \mathbb{R} -espace vectoriel des fonctions numériques d'une variable réelle.

On considère 3 fonctions f_1 , f_2 et f_3 :

$$\left\{ \begin{array}{cccc} f_1: \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & f_1\left(x\right) = 1 \end{array} \right. \quad \left\{ \begin{array}{cccc} f_2: \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & f_2\left(x\right) = e^x \end{array} \right. \quad \left\{ \begin{array}{cccc} f_3: \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & f_3\left(x\right) = |x| \end{array} \right.$$

^{1.} La décomposition de u dans la base $\mathcal F$ nous laisse penser que cette décomposition est unique

Nous avons rang $(\{f_1, f_2, f_3\}) = 3$, c'est à dire que la famille $\{f_1, f_2, f_3\}$ est libre et forme une base de Vect $(\{f_1, f_2, f_3\})$

Montrons que la famille $\{f_1, f_2, f_3\}$ est libre

Soient donc $\lambda_1 \in \mathbb{R}$, $\lambda_2 \in \mathbb{R}$ et $\lambda_3 \in \mathbb{R}$ tels que $\lambda_1 f_1 + \lambda_2 f_2 + \lambda_3 f_3 = \mathcal{O}$ où \mathcal{O} est la fonction nulle. Ceci signifie donc que, pour tout $x \in \mathbb{R}$, nous avons :

$$\lambda_1 f_1(x) + \lambda_2 f_2(x) + \lambda_3 f_3(x) = 0 \Longleftrightarrow \lambda_1 + \lambda_2 e^x + \lambda_3 |x| = 0$$

- \star Pour x=-1, nous obtenons $\lambda_1+\lambda_2 e^{-1}+\lambda_3=0$
- * Pour x = 0, nous avons $\lambda_1 + \lambda_2 = 0$
- * Pour x = 1, nous obtenons $\lambda_1 + \lambda_2 e + \lambda_3 = 0$

D'où nous obtenons le système de 3 équations à 3 inconnues :

$$\begin{cases} \lambda_1 + \lambda_2 e^{-1} + \lambda_3 = 0 \\ \lambda_1 + \lambda_2 = 0 \\ \lambda_1 + \lambda_2 e + \lambda_3 = 0 \end{cases} \Longrightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0$$

La famille $\{f_1, f_2, f_3\}$ est donc libre

Exercice 28:

1. On considère \mathbb{C}^3 en tant que \mathbb{C} -espace vectoriel de dimension 3, muni de sa base canonique. Déterminer, suivant les valeurs de $\alpha \in \mathbb{C}$ le rang de la famille $\mathcal{F} = \{a, b, c\}$ où

$$a=(1,1,\alpha) \quad b=(1,\alpha,1) \quad c=(\alpha,1,1)$$

2. Même question, pour le même système considéré comme famille de vecteurs de l'espace vectoriel $(\mathbb{Z}/2\mathbb{Z})^3$ sur le corps $\mathbb{Z}/2\mathbb{Z}$

3.6.11 Définition et théorème

Soit E un \mathbb{K} -espace vectoriel

On considère F et G 2 sous-espaces vectoriels de E de dimension finie tels que $F \cap G = \{0_E\}$. Il nous est alors possible de considérer $H = F \oplus G$. On dit que F et G sont en somme directe

- 1. Si $\{u_1, \cdots, u_p\}$ est une base de F et $\{v_1, \cdots, v_n\}$ une base de G, alors $\{u_1, \cdots, u_p, v_1, \cdots, v_n\}$ est une base de $H = F \oplus G$
- 2. Nous avons aussi $\dim H = \dim (F \oplus G) = \dim F + \dim G$

Démonstration

- 1. Si nous appelons $H = F + G = \{u \in E \text{ tels que } u = x_F + x_G \text{ où } x_F \in F \text{ et } x_G \in G\}$. Comme $F \cap G = \{0_E\}$, la décomposition $u = x_F + x_G$ est unique et il est possible d'écrire $H = F \oplus G$
- 2. Soient $\{u_1, \dots, u_p\}$ une base de F et $\{v_1, \dots, v_n\}$ une base de G.
 - (a) La famille $\{u_1,\cdots,u_p,v_1,\cdots,v_n\}$ est une famille génératrice de $H=F\oplus G$

En effet, si $u \in H$, alors $u = x_F + x_G$ et comme $x_F = \sum_{i=1}^p \lambda_i u_i$ et $x_g = \sum_{i=1}^n \mu_i v_i$ avec les

 $\lambda_i \in \mathbb{K}$ et $\mu_i \in \mathbb{K}$, nous avons alors :

$$u = x_F + x_G = \sum_{i=1}^p \lambda_i u_i + \sum_{i=1}^n \mu_i v_i = \lambda_1 u_1 + \dots + \lambda_p u_p + \mu_1 v_1 + \dots + \mu_n v_n$$

Ce qui montre que la famille $\{u_1,\cdots,u_p,v_1,\cdots,v_n\}$ est une famille génératrice de $H=F\oplus G$

(b) La famille $\{u_1, \dots, u_p, v_1, \dots, v_n\}$ est une famille linéairement indépendante.

Soient $\lambda_1, \dots, \lambda_p, \mu_1, \dots, \mu_n, n+p$ scalaires telles que :

$$\lambda_1 u_1 + \dots + \lambda_p u_p + \mu_1 v_1 + \dots + \mu_n v_n = 0_E$$

Alors

$$\lambda_1 u_1 + \dots + \lambda_p u_p = -\mu_1 v_1 - \dots - \mu_n v_n$$

Posons $X = \lambda_1 u_1 + \dots + \lambda_p u_p = -\mu_1 v_1 - \dots - \mu_n v_n$; comme $X = \lambda_1 u_1 + \dots + \lambda_p u_p$, alors $X \in F$ et comme nous avons aussi $X = -\mu_1 v_1 - \dots - \mu_n v_n$, nous avons aussi aussi $X = -\mu_1 v_1 - \dots - \mu_n v_n$, nous avons aussi $X = -\mu_1 v_1 - \dots - \mu_n v_n$, nous avons aussi $X = -\mu_1 v_1 - \dots - \mu_n v_n$, nous avons aussi $X = -\mu_1 v_1 - \dots - \mu_n v_n$, nous avons aussi $X = -\mu_1 v_1 - \dots - \mu_n v_n$, nous avons aussi $X = -\mu_1 v_1 - \dots - \mu_n v_n$, nous avons aussi $X = -\mu_1 v_1 - \dots - \mu_n v_n$, nous avons aussi $X = -\mu_1 v_1 - \dots - \mu_n v_n$, nous avons aussi $X = -\mu_1 v_1 - \dots - \mu_n v_n$, nous avons aussi $X = -\mu_1 v_1 - \dots - \mu_n v_n$, nous avons $X \in G$, c'est à dire que $X \in F \cap G$, et donc $X = 0_E$.

Alors, de l'indépendance de $\{u_1, \dots, u_p\}$, nous avons :

$$\lambda_1 u_1 + \dots + \lambda_p u_p = 0_E \Longrightarrow \lambda_1 = \lambda_2 = \dots = \lambda_p = 0$$

Et, par le même argument d'indépendance de $\{v_1, \dots, v_n\}$, nous avons

$$\mu_1 v_1 + \dots + \mu_n v_n = 0_E \Longrightarrow \mu_1 = \mu_2 = \dots = \mu_n = 0$$

Et donc, la famille $\{u_1, \dots, u_p, v_1, \dots, v_n\}$ est une famille linéairement indépendante.

On conclue donc que $\{u_1, \dots, u_p, v_1, \dots, v_n\}$ est une base de $H = F \oplus G$

3. D'après ce nous venons de démontrer, nous avons $\dim H = \dim (F \oplus G) = n + p = \dim F + \dim G$

3.6.12 Théorème

Soient E un \mathbb{K} -espace vectoriel , F et G 2 sous-espaces vectoriels de E de dimension finie. Alors :

$$\dim (F + G) = \dim F + \dim G - \dim (F \cap G)$$

Démonstration

1. On pose $H = F \cap G$

Alors, H est un sous-espace vectoriel de G, sous-espace vectoriel de dimension finie; H admet, dans G, un supplémentaire G_1 , et nous avons dons $G = H \oplus G_1$

- 2. Nous avons $F + G = F \oplus G_1$
 - (a) Tout d'abord $F \cap G_1 = \{0_E\}$

Soit $u \in F \cap G_1$; comme $G_1 \subset G$, nous avons aussi $u \in F \cap G$, c'est à dire $u \in H$ et donc $u \in H \cap G_1$; comme $H \cap G_1 = \{0_E\}$, nous avons $u = 0_E$ et donc $F \cap G_1 = \{0_E\}$

- (b) Nous avons $F + G = F + G_1$
 - \rightarrow Nous avons $F + G \subset F + G_1$

En effet, soit $u \in F + G$; alors $u = x_F + x_G$. Comme G est somme directe de H et G_1 , nous avons, et de manière unique, $x_G = y_H + y_{G_1}$ d'où $u = x_F + x_G = x_F + y_H + y_{G_1}$. Comme $H = F \cap G$, nous avons $y_H \in F$ et donc $u = \underbrace{x_F + y_H}_{\in F} + \underbrace{y_{G_1}}_{\in G_1}$

$$\in F$$
 $\in G_1$

C'est à dire $u \in F + G_1$

 \rightarrow Démontrons que nous avons $F + G_1 \subset F + G$ Là, c'est évident, puisque si $u \in F + G_1$, alors $u = x_F + x_{G_1}$. Comme $G_1 \subset G$, nous avons aussi $x_{G_1} \in G$, et donc $u \in F + G$

Et donc $F + G = F + G_1$

- (c) Comme F et G_1 sont en somme directe, nous avons, en fait, $F+G=F\oplus G_1$
- 3. Ainsi, $\dim (F + G) = \dim (F \oplus G_1) = \dim F + \dim G_1$.

Comme $G = H \oplus G_1$, nous avons dim $G = \dim H + \dim G_1$, et en remplaçant dim G_1 par dim $G - \dim G_1$ $\dim H$, nous obtenons:

$$\dim(F+G) = \dim F + \dim G - \dim H \iff \dim(F+G) = \dim F + \dim G - \dim(F\cap G)$$

Ce que nous voulions

3.6.13 Théorème du rang

Soit E un \mathbb{K} -espace vectoriel **de dimension finie** et F un \mathbb{K} -espace vectoriel quelconque. Nous considérons une application linéaire $f:E\longrightarrow F$

- 1. On appelle rang de f, le nombre rang (f) défini par rang $(f) = \dim (\operatorname{Im} f)$
- 2. Nous avons : $\dim (\operatorname{Im} f) + \dim (\ker f) = \dim E$

Démonstration

1. Nous commençons par un commentaire

- (a) Tout d'abord, il faut remarquer que seul le \mathbb{K} -espace vectoriel E est de dimension finie, alors que F est un \mathbb{K} -espace vectoriel quelconque, et, surtout, pas forcément de dimension finie.
- (b) Si $\{e_1, \dots, e_n\}$ est une base de E, $\operatorname{Im} f = f(E)$ admet pour famille génératrice, la famille $\{f(e_1), \dots, f(e_n)\}$. Ainsi, $\dim(\operatorname{Im} f) = \operatorname{rang}(\{e_1, \dots, e_n\})$, et il n'est donc pas aberrant de parler du rang de f en posant :

$$\operatorname{rang}(f) = \operatorname{rang}(\{e_1, \cdots, e_n\}) = \dim(\operatorname{Im} f)$$

2. Démontrons le théorème du rang

(a) Si ker $f = \{0_E\}$, alors dim (ker f) = 0 et f est injective. Si la famille $\{e_1, \dots, e_n\}$ est une base de E, alors la famille $\{f(e_1), \dots, f(e_n)\}$ est libre, forme une base de Imf et donc dim (Imf) = n. Nous avons bien, dans ce cas, l'égalité

$$\dim (\operatorname{Im} f) + \dim (\ker f) = \dim E$$

- (b) Supposons, maintenant, que $\ker f \neq \{0_E\}$ et $\dim (\ker f) = p$ où $1 \leq p \leq n$. Soit alors $\{x_1, \dots, x_p\}$ une base de $\ker f$ que nous complétons par des vecteurs $\{x_{p+1}, \dots, x_n\}$ de telle sorte que $\{x_1, \dots, x_p, x_{p+1}, \dots, x_n\}$ forme une base de E
 - i. La famille $\{f(x_{p+1}), \dots, f(x_n)\}$ est génératrice de $\mathrm{Im} f$

En effet, soit $y \in \text{Im} f$; il existe donc $u \in E$ tel que y = f(u), et, dans la base

$$\{x_1, \dots, x_p, x_{p+1}, \dots, x_n\}$$
, nous avons $u = \sum_{i=1}^n \lambda_i x_i$, d'où $f(u) = \sum_{i=1}^n \lambda_i f(x_i)$.

Or, pour $i = 1, \dots, p$, nous avons $f(x_i) = 0_F$, de telle sorte que

$$y = f(u) = \sum_{i=p+1}^{n} \lambda_i f(x_i)$$

Ainsi, tout $y \in \text{Im} f$ s'écrit en fonction de $\{f(x_{p+1}), \dots, f(x_n)\}$ et nous pouvons en déduire que la famille de vecteurs de $F\{f(x_{p+1}), \dots, f(x_n)\}$ est génératrice de Im f

ii. La famille $\{f\left(x_{p+1}\right),\cdots,f\left(x_{n}\right)\}$ est une famille libre de E Soient $\alpha_{1},\alpha_{2},\cdots,\alpha_{n-p},\,n-p$ scalaires tels que

$$\alpha_1 f(x_{p+1}) + \alpha_2 f(x_{p+2}) + \dots + \alpha_{n-p} f(x_n) = 0_F$$

Alors,

$$\alpha_1 f(x_{p+1}) + \alpha_2 f(x_{p+2}) + \dots + \alpha_{n-p} f(x_n) = 0_F$$

$$\iff$$

$$f(\alpha_1 x_{p+1} + \alpha_2 x_{p+2} + \dots + \alpha_{n-p} x_n) = 0_F$$

Ce qui veut dire que $\alpha_1 x_{p+1} + \alpha_2 x_{p+2} + \cdots + \alpha_{n-p} x_n \in \ker f$, et donc est combinaison linéaire des vecteurs $\{x_1, \dots, x_p\}$, et donc :

$$\alpha_1 x_{p+1} + \alpha_2 x_{p+2} + \dots + \alpha_{n-p} x_n = \lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_p x_p$$

$$\iff$$

$$\alpha_1 x_{p+1} + \alpha_2 x_{p+2} + \dots + \alpha_{n-p} x_n - \lambda_1 x_1 - \lambda_2 x_2 - \dots - \lambda_p x_p = 0_E$$

La famille $\{x_1, \dots, x_p, x_{p+1}, \dots, x_n\}$ formant une base de E, nous avons

$$\alpha_1 = \alpha_2 = \dots + \alpha_{n-p} = \lambda_1 = \lambda_2 = \dots = \lambda_p = 0$$

Ce qui montre que la famille $\{f(x_{p+1}), \dots, f(x_n)\}$ est une famille libre de E

En conclusion, la famille $\{f(x_{p+1}), \dots, f(x_n)\}$ est une base de E

Donc, $\dim(\operatorname{Im} f) = n - p$.

Ainsi, $\dim (\operatorname{Im} f) + \dim (\ker f) = n - p + p = n = \dim E$

Remarque 23:

Dans la démonstration précédente, nous avons choisi des bases adaptées au problème à résoudre. C'est un principe qui facilite grandement les démonstrations.

Exemple 12:

Nous allons prendre des exemples de base adaptéee dans $\mathbb{K}_n[X]$

- 1. Dans $\mathbb{K}_n[X]$ on étudie l'application linéaire D définie par D(P) = P' où P' est le polynôme dérivé de P
 - Une base adaptée sera formée des polynômes $E_k = \frac{X^k}{k!}$ avec $k = 0, \dots, n$ dont les transformées par D sont de la même forme ; en effet, nous avons, pour $1 \le k \le n$, $D(E_k) = E_{k-1}$ et $D(E_0) = 0$
- 2. Mais si on étudie l'application linéaire V définie par V(P)(x) = P(x+1) P(x), on vérifiera que la base formée des poiynomes $F_k(X) = \frac{X(X-1)\cdots(X-(k-1))}{k!}$ avec $0 \leqslant k \leqslant n$, est adepte car nous avons $V(P_k) = P_{k-1}$ si $1 \leqslant k \leqslant n$ et $V(P_0) = 0$

3.6.14 Théorème

Soit E un \mathbb{K} -espace vectoriel de dimension finie n

Soit $f: E \longrightarrow E$ un endomorphisme de E.

Les 4 propriétés suivantes sont équivalentes :

- 1. f est un automorphisme de E
- 2. f est injective
- 3. f est surjective
- 4. rang (f) = n

Démonstration

Une application linéaire $f: E \longrightarrow E$ est un automorphisme de E, veut dire que f est une application linéaire bijective de E dans E.

- 1. On suppose que f est un automorphisme de E f est, par définition, bijective, donc f est injective
- 2. On suppose que f est injective Alors, $\ker f = \{0_E\}$ et de dim $(\ker f) = 0$, on tire dim $(\operatorname{Im} f) = n$, et donc $\operatorname{Im} f = E$ et f est bien surjective.
- 3. On suppose que f est surjective Alors dim $(\operatorname{Im} f) = n$ et donc, rang (f) = n
- 4. On suppose que rang (f) = nAlors dim $(\operatorname{Im} f) = n$ et donc dim $(\ker f) = 0$, d'où f est surjective et injective. Donc bijective