6.8 Croissance comparée des suites

Les suites sont des cas particuliers de fonctions numériques, et nous étudions le comportement des suites en $+\infty$. Ce paragraphe est donc l'aplication ou l'adaptation de la section précédente.

6.8.1 Définition

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ 2 suites numériques.

- 1. On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est dominée par la suite $(v_n)_{n\in\mathbb{N}}$, et on écrit $(u_n)_{n\in\mathbb{N}} \prec \prec (v_n)_{n\in\mathbb{N}}$ s'il existe A>0 tel que $(\forall n\in\mathbb{N})\,(|u_n|\leqslant A\,|v_n|)$
- 2. La suite $(u_n)_{n\in\mathbb{N}}$ est négligeable devant la suite $(v_n)_{n\in\mathbb{N}}$, et on écrit $(u_n)_{n\in\mathbb{N}} << (v_n)_{n\in\mathbb{N}}$ s'il existe une suite $(\varepsilon_n)_{n\in\mathbb{N}}$ de limite zéro, telle que $u_n = \varepsilon_n v_n$ à partir d'un certain rang

Remarque 20:

1. Si pour tout $n \in \mathbb{N}$ nous avons $v_n \neq 0$, nous avons alors les équivalences suivantes :

$$(u_n)_{n\in\mathbb{N}} \prec \prec (v_n)_{n\in\mathbb{N}} \Longleftrightarrow \left(\frac{u_n}{v_n}\right)_{n\in\mathbb{N}} \text{ born\'ee}$$

$$(u_n)_{n\in\mathbb{N}} << (v_n)_{n\in\mathbb{N}} \Longleftrightarrow \lim_{n\to+\infty} \frac{u_n}{v_n} = 0$$

2. En utilisant la définition de la limite, nous avons l'équivalence :

$$(u_n)_{n\in\mathbb{N}} << (v_n)_{n\in\mathbb{N}} \iff (\forall \varepsilon > 0) (\exists N_\varepsilon \in \mathbb{N} \text{ tel que } n \geqslant N_\varepsilon \Rightarrow |u_n| \leqslant \varepsilon |v_n|)$$

3. C'est bien une adaptation aux suites des définitions données pour les fonctions.

6.8.2 Notations de Landau

Soit $(v_n)_{n\in\mathbb{N}}$ une suite numérique

1. On appelle $O\left(v_n\right)$ l'ensemble des suites $(u_n)_{n\in\mathbb{N}}$ dominées par $(v_n)_{n\in\mathbb{N}}$, c'est à dire :

$$O\left(v_{n}\right)=\left\{ \left(u_{n}\right)_{n\in\mathbb{N}}\text{ tel que }\left(u_{n}\right)_{n\in\mathbb{N}}\prec\prec\left(v_{n}\right)_{n\in\mathbb{N}}\right\}$$

2. On appelle $o\left(v_n\right)$ l'ensemble des suites $(u_n)_{n\in\mathbb{N}}$ négligeables devant $(v_n)_{n\in\mathbb{N}}$ c'est à dire :

$$o\left(v_{n}\right)=\left\{ \left(u_{n}\right)_{n\in\mathbb{N}}\text{ tel que }\left(u_{n}\right)_{n\in\mathbb{N}}<<\left(v_{n}\right)_{n\in\mathbb{N}}\right\}$$

Exemple 17:

Quelques exemples simples :

- 1. Soient $\alpha < \beta$ 2 réels alors $\frac{n^{\alpha}}{n^{\beta}} = n^{\alpha-\beta}$ donc $\lim_{n \to +\infty} n^{\alpha-\beta} = 0$ et donc, $n^{\alpha} \in o(n^{\beta})$ i.e. n^{α} est négligeable devant n^{β} lorsque n devient très grand (au voisinage $de + \infty$)
 - (a) On a donc la suite $(\sqrt{n})_{n\in\mathbb{N}}$ négligeable devant la suite $(n)_{n\in\mathbb{N}}$ (on $a:\alpha=\frac{1}{2}$ et $\beta=1$)
 - (b) De même, la suite $\left(\frac{1}{n^3}\right)_{n\in\mathbb{N}}$ est négligeable devant la suite $\left(\frac{1}{n}\right)_{n\in\mathbb{N}}$ (on $a:(\alpha=-3)$ et $(\beta=-1)$)

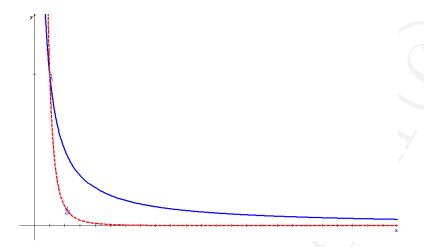


FIGURE 6.10 – Schéma montrant les deux suites $\frac{1}{n^3}$ et $\frac{1}{n}$

(c) En particulier, si P est un polynôme de degré d, à coefficients dans \mathbb{R} , alors,

$$(\forall \alpha \in \mathbb{R}) (\alpha > d \Rightarrow (P(n))_{n \in \mathbb{N}} \in o(n^{\alpha}))$$

- (d) Ceci veut donc dire que, par exemple, que la suite $\left(5n^{12}+25456n^8+\frac{\sqrt{5}}{23}n^2\right)_{n\in\mathbb{N}}$ est négligeable devant $\left(n^{\frac{157}{12}}\right)_{n\in\mathbb{N}}$
- 2. Soient α et β 2 réels tels que $0 < \alpha < \beta$; alors, $0 < \frac{\alpha}{\beta} < 1$, donc $\lim_{n \to +\infty} \left(\frac{\alpha}{\beta}\right)^n = 0$ et $\alpha^n \in o(\beta^n)$ $\underline{\text{par exemple}} : 2^n \text{ est négligeable devant } 3^n \text{ et } \frac{1}{3^n} \text{ est négligeable devant } \frac{1}{2^n}$

Exercice 22:

1. Pour $\beta \in \mathbb{R}$, démontrer que n^{β} est négligeable devant e^n

Correction

Il faut donc démontrer que $\lim_{n \to +\infty} \frac{n^{\beta}}{e^n} = 0$

Pour commencer, nous allons présenter autrement l'expression $\frac{n^{\beta}}{e^n}$.

$$\frac{n^{\beta}}{e^n} = \frac{e^{\beta \ln n}}{e^n} = e^{\beta \ln n - n} = e^{n\left(\beta \frac{\ln n}{n} - 1\right)}$$

Or, $\lim_{n\to+\infty}\frac{\ln n}{n}=0$, donc, $\lim_{n\to+\infty}n\left(\beta\frac{\ln n}{n}-1\right)=-\infty$, et en utilisant les limites par composition, $\lim_{n\to+\infty}e^{n\left(\beta\frac{\ln n}{n}-1\right)}=0$, c'est à dire $\lim_{n\to+\infty}\frac{n^{\beta}}{e^n}=0$

2. De même, pour $\beta \in \mathbb{R}$, démontrer que n^{β} est négligeable devant a^n où a > 1

Correction

La démonstration est la même, sauf que a remplace e!!

$$\frac{n^{\beta}}{a^n} = \frac{e^{\beta \ln n}}{e^{n \ln a}} = e^{\beta \ln n - n \ln a} = e^{n \left(\beta \frac{\ln n}{n} - \ln a\right)}$$

Et on termine comme ci-dessus, car, comme a > 1, $\ln a > 0$

3. Pour $\beta > 0$ et $\alpha > 0$, démontrer que $(\ln n)^{\alpha}$ est négligeable devant n^{β}

Correction

Cette fois ci, la question est plus délicate. Il faut toujours démontrer que $\lim_{n\to+\infty}\frac{\left(\ln n\right)^{\alpha}}{n^{\beta}}=0$

L'idée principale de la démonstration est d'utiliser la limite connue : $\lim_{x\to +\infty} \frac{\ln x}{x} = 0$ L'objet est donc de s'y ramener. Nous avons donc :

$$\frac{(\ln n)^{\alpha}}{n^{\beta}} = \frac{(\ln n)^{\alpha}}{\left(n^{\frac{\beta}{\alpha}}\right)^{\alpha}} = \frac{\left(\frac{\alpha}{\beta} \ln n^{\frac{\beta}{\alpha}}\right)^{\alpha}}{\left(n^{\frac{\beta}{\alpha}}\right)^{\alpha}} = \left(\frac{\alpha}{\beta}\right)^{\alpha} \left(\frac{\ln n^{\frac{\beta}{\alpha}}}{n^{\frac{\beta}{\alpha}}}\right)^{\alpha}$$

En posant $N=n^{\frac{\beta}{\alpha}},$ nous avons $\lim_{n\to+\infty}\left(\frac{\ln n^{\frac{\beta}{\alpha}}}{n^{\frac{\beta}{\alpha}}}\right)^{\alpha}==\lim_{N\to+\infty}\left(\frac{\ln N}{N}\right)^{\alpha}=0$

Nous en concluons donc que $\lim_{n\to +\infty} \frac{(\ln n)^{\alpha}}{n^{\beta}} = 0$, c'est à dire que si $\beta > 0$ et $\alpha > 0$, $(\ln n)^{\alpha}$ est négligeable devant n^{β}

6.8.3 Proposition

- 1. Si $\left(u_{n}^{1}\right)_{n\in\mathbb{N}}\in\mathcal{O}\left(v_{n}\right)$ et si $\left(u_{n}^{2}\right)_{n\in\mathbb{N}}\in\mathcal{O}\left(v_{n}\right)$ alors, $\left(\forall\lambda\in\mathbb{R}\right)\left(\forall\mu\in\mathbb{R}\right)\left(\lambda u_{n}^{1}+\mu u_{n}^{2}\in\mathcal{O}\left(v_{n}\right)\right)$ On dit alors que $\mathcal{O}\left(v_{n}\right)$ est stable par combinaison linéaire $\mathcal{O}\left(v_{n}\right)$ est un sous-espace vectoriel de l'espace des suites $\mathbb{R}^{\mathbb{N}}$
- 2. De même, si $\left(u_n^1\right)_{n\in\mathbb{N}}\in o\left(v_n\right)$ et si $\left(u_n^2\right)_{n\in\mathbb{N}}\in o\left(v_n\right)$ alors, $(\forall\lambda\in\mathbb{R})\left(\forall\mu\in\mathbb{R}\right)\left(\lambda u_n^1+\mu u_n^2\in o\left(v_n\right)\right)$ On dit alors que $o\left(v_n\right)$ est stable par combinaison linéaire $o\left(v_n\right)$ est un sous-espace vectoriel de l'espace des suites $\mathbb{R}^\mathbb{N}$

Remarque 21:

Une remarque sur la stabilité de l'addition et de la multiplication par un scalaire; c'est un résultat que l'on retrouve pour un polynôme. Les ensembles $\mathcal{O}(v_n)$ et $o(v_n)$ sont des \mathbb{R} -espaces vectoriels. (Voir le cours d'Algèbre)

6.8.4 Equivalence de suites

Voici un énoncé important; nous retrouverons la notion d'équivalence tout au long des cours d'analyse. Deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont dites équivalentes, et on écrit :

$$u_n \underset{n \to +\infty}{\approx} v_n$$

Si et seulement si $u_n - v_n \in o(v_n)$

Remarque 22:

1. La condition $u_n - v_n \in o(v_n)$, en fait un peu compliquée, est équivalente à la condition (donnée par la définition):

Il existe $N_0 \in \mathbb{N}$ et une suite $(\varepsilon_n)_{n \in \mathbb{N}}$ tendant vers zéro, telle que si $n > N_0$, alors $u_n - v_n = \varepsilon_n v_n$, ou ce qui est équivalent, $u_n = (1 + \varepsilon_n) v_n$

2. Si la suite $(v_n)_{n\in\mathbb{N}}$ ne s'annule pas à partir d'un certain rang, la propriété $u_n \underset{n\to+\infty}{\approx} v_n$ est

équivalente à $\lim_{n\to+\infty} \frac{u_n}{v_n} = 1$. C'est ce qui est précisé dans le théorème suivant

6.8.5 Théorème

 $E=\mathbb{R}^{\mathbb{N}}$ est l'ensemble des suites numériques réelles.

- 1. Dans $E=\mathbb{C}^{\mathbb{N}}$, la relation $u_n pprox v_n$ est une relation d'équivalence
- 2. Si, pour tout $n \in \mathbb{N}$, $v_n \neq 0$, alors,

$$u_n \approx v_n \Leftrightarrow \lim_{n \to +\infty} \frac{u_n}{v_n} = 1$$

Démonstration

1. Montrons que c'est une relation d'équivalence

Réflexivité Evidemment, on a $(u_n)_{n\in\mathbb{N}} \approx (u_n)_{n\in\mathbb{N}}$; il suffit de prendre pour $(\varepsilon_n)_{n\in\mathbb{N}}$ la suite nulle.

Symétrie Supposons $u_n \approx v_n$; il faut donc montrer que $v_n \approx u_n$

A partir d'un certain rang N_0 , nous avons $u_n = (1 + \varepsilon_n) v_n$, et donc $v_n = \left(\frac{1}{1 + \varepsilon_n}\right) u_n$, ou encore, $v_n = \left(1 - \frac{\varepsilon_n}{1 + \varepsilon_n}\right) u_n$; si nous posons $\varepsilon'_n = \frac{-\varepsilon_n}{1 + \varepsilon_n}$, nous avons : $\lim_{n \to +\infty} \varepsilon'_n = 0$, et donc $v_n \approx u_n$

Transitivité Supposons $u_n \approx v_n$ et $v_n \approx w_n$; il faut donc démontrer que $u_n \approx w_n$

Il existe donc un entier N_0 tel que si $n \ge N_0$, alors, $u_n = (1 + \varepsilon_n) v_n$

De même, il existe N_1 tel que, si $n \ge N_1$, alors, $v_n = (1 + \varepsilon'_n) w_n$

Donc, pour $n \ge \max(N_0, N_1)$, nous avons $u_n = (1 + \varepsilon_n) v_n$ et $v_n = (1 + \varepsilon'_n) w_n$, et, dès ce moment, $u_n v_n = (1 + \varepsilon_n) (1 + \varepsilon'_n) u_n$. En posant $\varepsilon''_n = \varepsilon_n (1 + \varepsilon'_n) + \varepsilon'_n$, on a bien $\lim_{n \to +\infty} \varepsilon''_n = 0$

On a donc $u_n \approx w_n$

- 2. La démonstration du second point est très facile. Nous allons, comme pour toutes les équivalences, la démontrer en deux temps.
 - (a) Supposons $u_n \underset{n \to +\infty}{\approx} v_n$

Traduisons maintenant ce que ceci veut dire (retour à la définition) : à partir d'un certain rang $N_0 \in \mathbb{N}$, nous avons $u_n = (1 + \varepsilon_n) \, v_n$ avec $\lim_{n \to +\infty} \varepsilon_n = 0$ donc, si $n > N_0$, $\frac{u_n}{v_n} = 1 + \varepsilon_n$, et de $\lim_{n \to +\infty} \frac{u_n}{v_n} = 1$, nous concluons que $\lim_{n \to +\infty} \varepsilon_n = 0$

(b) Supposons $\lim_{n \to +\infty} \frac{u_n}{v_n} = 1$

Ceci veut donc dire, que nous avons $\frac{u_n}{v_n}=1+\beta_n$ avec $\lim_{n\to+\infty}\beta_n=0$; en fait, donc, nous pouvons conclure que $u_n=v_n\left(1+\beta_n\right)$; ici, nous avons donc $\beta_n=\varepsilon_n$

Remarque 23:

Remarques très importantes

1. Si $u_n \underset{+\infty}{\approx} v_n$, alors, pour tout A > 0, il existe N_A , entier positif tel que $n > N_A \Rightarrow |u_n| \leqslant A |v_n|$ De même, pour tout B > 0, il existe N_B tel que $n > N_B \Rightarrow |v_n| \leqslant B |u_n|$

Ces inégalités montrent la relation "forte" qu'est l'équivalence des suites.

Les démonstrations reposent sur le fait que les suites $(\varepsilon_n)_{n\in\mathbb{N}}$ tendent vers zéro

De plus, avec ces inégalités, on voit que si $(u_n)_{n\in\mathbb{N}}$ s'annule à partir d'un certain rang, il en est de même de $(v_n)_{n\in\mathbb{N}}$ et réciproquement!

2. Si $u_n \approx v_n$ et si $\lim_{n \to +\infty} v_n = l$, alors, $\lim_{n \to +\infty} u_n = l$, même si $\lim_{n \to +\infty} = \infty$. On en conclue donc que, dans une recherche d'existence ou de valeur de la limite, on peut remplacer une suite, par une autre suite équivalente

Exemple 18:

1. Soit P un polynôme, $P(X) = a_k X^k + a_{k-1} X^{k-1} + \ldots + a_0$, alors, $P(n) \approx a_k n^k$ exemple: $125n^{258} + n^7 \sqrt{\pi} \approx 125n^{258}$

On retrouve, ici, l'expresssion vue en Lycée :

en $+\infty$, un polynôme tend comme son terme de plus haut degré.

2. Autre exemple classique :
$$\lim_{n \to +\infty} \frac{\ln\left(1 + \frac{1}{n}\right)}{\frac{1}{n}} = 1$$
, donc, $\ln\left(1 + \frac{1}{n}\right) \underset{+\infty}{\approx} \frac{1}{n}$

3. De même, en utilisant les limites classiques : $\lim_{x\to 0} \frac{e^x - 1}{x} = 1$, nous avons $\lim_{n\to +\infty} \frac{e^{\frac{1}{n}} - 1}{\frac{1}{n}} = 1$; donc,

$$\left(e^{\frac{1}{n}} - 1\right) \underset{+\infty}{\approx} \frac{1}{n}$$

4. Dans les chapitres ultérieurs (développements limités), nous aurons d'autres outils pour trouver des équivalents.

6.8.6 Proposition : Règles de calcul sur les suites équivalentes

- 1. Si $u_n^1 \underset{+\infty}{\approx} u_n^2$ et si $v_n^1 \underset{+\infty}{\approx} v_n^2$, alors $u_n^1 v_n^1 \underset{+\infty}{\approx} u_n^2 v_n^2$
- 2. Si $u_n \underset{+\infty}{\approx} v_n$ et si u_n et v_n ne s'annulent pas, alors $\frac{1}{u_n} \underset{+\infty}{pprox} \frac{1}{v_n}$
- 3. Conséquence : Si $u_n^1 \underset{+\infty}{\approx} u_n^2$ et si $v_n^1 \approx v_n^2$, et si u_n^2 et v_n^2 ne s'annulent pas, alors $\frac{u_n^1}{u_n^2} \underset{+\infty}{\approx} \frac{v_n^1}{v_n^2}$

Démonstration

1. Démonstration du premier point

Supposons $u_n^1 \underset{+\infty}{\approx} u_n^2$ et $v_n^1 \underset{+\infty}{\approx} v_n^2$, alors, $\lim_{n \to +\infty} \frac{u_n^1}{u_n^2} = 1$, et, de même, $\lim_{n \to +\infty} \frac{v_n^1}{v_n^2} = 1$, ce qui montre que, en utilisant le produit des limites, $\lim_{n \to +\infty} \frac{u_n^1 v_n^1}{u_n^2 v_n^2} = 1$, c'est à dire $u_n^1 v_n^1 \underset{+\infty}{\approx} u_n^2 v_n^2$

2. Démonstration du second point Il existe donc un entier N_0 tel que si $n \ge N_0$, alors, $u_n = (1 + \varepsilon_n) v_n$, donc, si $n \ge N_0$ $\frac{1}{u_n} = \frac{1}{(1 + \varepsilon_n) v_n} = \frac{1}{(1 + \varepsilon_n)} \times \frac{1}{v_n}$;

Or,
$$\frac{1}{(1+\varepsilon_n)} = 1 - \frac{\varepsilon_n}{(1+\varepsilon_n)}$$
; en posant $E_n = -\frac{\varepsilon_n}{(1+\varepsilon_n)}$, on a: $\lim_{n \to +\infty} E_n = 0$ et $\frac{1}{u_n} = (1+E_n)\frac{1}{v_n}$ donc $\frac{1}{u_n} \approx \frac{1}{v_n}$

3. Démonstration du troisième point Le troisième point est une synthèse des 2 points précédents.

Exemple 19:

L'exemple type est la question posée par le rapport de deux polynômes.

Si
$$u_n = \frac{P(n)}{Q(n)} = \frac{a_k n^k + \ldots + a_0}{b_j n^j + \ldots + b_0}$$
, comme nous avons $P(n) \underset{+\infty}{\approx} a_k n^k$ et $Q(n) \underset{+\infty}{\approx} b_j n^j$, nous avons $u_n \underset{+\infty}{\approx} \frac{a_k n^k}{b_j n^j}$, c'est à dire : $u_n \underset{+\infty}{\approx} \frac{a_k}{b_j} n^{k-j}$

Exercice 23:

1. En utilisant les équivalents, calculer les limites suivantes :

(a)
$$\lim_{n \to +\infty} \frac{n^2 + 2n\sin n + 1}{2n^2 + 3n + 1}$$

(a) $\lim_{n \to +\infty} \frac{n^2 + 2n\sin n + 1}{2n^2 + 3n + 1}$ Nous avons $n^2 + 2n\sin n + 1 \underset{+\infty}{\approx} n^2$ et $2n^2 + 3n + 1 \underset{+\infty}{\approx} 2n^2$. nous en déduisons :

$$\frac{n^2 + 2n\sin n + 1}{2n^2 + 3n + 1} \underset{+\infty}{\approx} \frac{n^2}{2n^2}$$

Donc,
$$\lim_{n \to +\infty} \frac{n^2 + 2n\sin n + 1}{2n^2 + 3n + 1} = \frac{1}{2}$$
(b) $\lim_{n \to +\infty} \frac{2^n + n^2 + 3}{2^n + 3^n + 1}$

(b)
$$\lim_{n \to +\infty} \frac{2^n + n^2 + 3}{2^n + 3^n + 1}$$

La démonstration est la même :

Nous avons $2^n+n^2+3\underset{+\infty}{\approx}2^n$ et $2^n+3^n+1\underset{+\infty}{\approx}3^n$. nous en déduisons :

$$\frac{2^n + n^2 + 3}{2^n + 3^n + 1} \approx \frac{2^n}{3^n}$$

Donc,
$$\lim_{n \to +\infty} \frac{2^n + n^2 + 3}{2^n + 3^n + 1} = 0$$

Donc, $\lim_{n\to+\infty} \frac{2^n+n^2+3}{2^n+3^n+1}=0$ 2. Montrer que si $\alpha\in\mathbb{R}$ et que si $u_n\underset{+\infty}{\approx}v_n$, alors $(u_n)^\alpha\underset{+\infty}{\approx}(v_n)^\alpha$

Rien de plus simple. Par hypothèse, nous avons $\lim_{n\to+\infty}\frac{u_n}{v_n}=1$, donc, $\lim_{n\to+\infty}\left(\frac{u_n}{v_n}\right)^{\alpha}=1$, c'est à dire $\lim_{n\to+\infty}\frac{u_n^{\alpha}}{v_n^{\alpha}}=1$

3. On appelle $u_n^1 = n^3 + 4n^2$, $u_n^2 = n^3 + 1$, $v_n^1 = -n^3 + \frac{1}{n}$, $v_n^2 = -n^3 + 2n$. Montrer que l'on a $u_n^1 \underset{+\infty}{\approx} u_n^2$, $v_n^1 \underset{+\infty}{\approx} v_n^2$, mais pas $u_n^1 + v_n^1 \underset{+\infty}{\approx} u_n^2 + v_n^2$

Il suffit de remarquer que $u_n^1 + v_n^1 = 4n^2 + \frac{1}{n}$ et que $u_n^2 + v_n^2 = 2n + 1$

Avons nous $e^{n^3+4n^2} \underset{+\infty}{\approx} e^{n^3+1}$?

Il suffit de faire le rapport $\frac{e^{n^3+4n^2}}{e^{n^3+1}}=e^{4n^2-1}$ qui ne tend pas vers 1 lorsque n tend vers

Remarque 24:

On ne fait pas ce qu'on veut avec les équivalents (par exemple additionner, prendre l'exponentielle ou le logarithme) il faut, le plus souvent, revenir à la définition.