3.4 Equivalences et comparaison à une intégrale

3.4.1 Théorème sur les séries à termes généraux équivalents

Soit $\sum u_n$ et $\sum v_n$ 2 séries numériques telles que les termes u_n et v_n soient <u>de signe constant</u>, et, de plus $u_n \underset{+\infty}{\approx} v_n$ alors, ces 2 séries sont de même nature

Démonstration

1. On suppose que pour tout $n \in \mathbb{N}$, $u_n > 0$ et $v_n > 0$

Nous avons:
$$u_n \underset{+\infty}{\approx} v_n \iff \lim_{n \to +\infty} \frac{u_n}{v_n} = 1$$

Il existe donc
$$N_{\varepsilon} \in \mathbb{N}$$
, tel que $n \geqslant N_{\varepsilon} \Rightarrow \left| \frac{u_n}{v_n} - 1 \right| \leqslant \frac{1}{2}$

C'est à dire, en tenant compte de la signification de la valeur absolue :

$$\frac{1}{2} \leqslant \frac{u_n}{v_n} \leqslant \frac{3}{2} \Longleftrightarrow \frac{1}{2} v_n \leqslant u_n \leqslant \frac{3}{2} v_n$$

dès que $n \geqslant N_{\varepsilon}$.

Donc, si $n \ge N_{\varepsilon}$, alors $v_n \le 2u_n$ et $2u_n \le 3v_n$, ce qui montre que $\sum u_n$ et $\sum v_n$ sont de même nature.

2. Qu'est ce qui change, si $u_n < 0$ et $v_n < 0$?

Nous appliquons le résultat précédent aux séries de terme général $-u_n$ et $-v_n$.

Si
$$u_n \underset{+\infty}{\approx} v_n$$
, c'est à dire $\lim_{n \to +\infty} \frac{u_n}{v_n} = 1$, nous avons aussi $\lim_{n \to +\infty} \frac{-u_n}{-v_n} = 1$, c'est à dire, d'après le résultat ci-dessus, que les séries $\sum -u_n$ et $\sum -v_n$ sont de même nature, et donc que $\sum u_n$ et $\sum v_n$ sont de même nature

3.4.2 Théorème

On a des résultats remarquables sur les restes et les sommes partielles :

Soit $\sum u_n$ et $\sum v_n$ 2 séries numériques telles que les termes u_n et v_n soient $\underline{\text{de signe constant}}$, et, de plus $u_n \underset{+\infty}{\approx} v_n$.

Nous appelons $S_n^u = \sum_{k=0}^n u_k$ la somme partielle d'ordre n de la série $\sum u_n$ et $S_n^v = \sum_{k=0}^n v_k$ la somme

partielle d'ordre n de la série $\sum v_n$

De même, nous appelons $R_n^u=\sum_{k=n+1}^{+\infty}u_k$ le reste d'ordre n de la série $\sum u_n$ et $R_n^v=\sum_{k=n+1}^{+\infty}v_k$ le reste d'ordre n de la série $\sum v_n$

- 1. Si les séries $\sum u_n$ et $\sum v_n$ convergent, alors $R_n^u \underset{+\infty}{\approx} R_n^v$, c'est à dire que <u>les restes d'ordre n sont équivalents</u>
- 2. Si les séries $\sum u_n$ et $\sum v_n$ divergent, alors $S^u_n \underset{+\infty}{\approx} S^v_n$, c'est à dire que les sommes d'ordre n sont équivalentes

Démonstration

Pour simplifier, sans toutefois perdre de généralité, nous supposerons $u_n > 0$ et $v_n > 0$ pour tout $n \in \mathbb{N}$, ou, tout au moins, à partir d'un certain rang.

1. Supposons que les séries $\sum u_n$ et $\sum v_n$ convergent

Comme $\lim_{n\to+\infty} R_n^u = \lim_{n\to+\infty} R_n^v = 0$, nous allons étudier ici, la façon dont les restes tendent vers 0.

De $u_n \underset{+\infty}{\approx} v_n$, nous avons $\lim_{n \to +\infty} \frac{u_n}{v_n} = 1$.

Soit donc $\varepsilon > 0$. Il existe donc $N \in \mathbb{N}$ tel que si n > N, alors

$$\left| \frac{u_n}{v_n} - 1 \right| < \varepsilon \iff v_n (1 - \varepsilon) < u_n < v_n (1 + \varepsilon)$$

Donc, pour tout k > n, nous avons $v_k(1-\varepsilon) < u_k < v_k(1-\varepsilon)$, et en faisant les sommations de $n+1 \ \text{à} \ p \geqslant n+1$, nous obtenons :

$$(1-\varepsilon)\sum_{k=n+1}^{p} v_k < \sum_{k=n+1}^{p} u_k < (1-\varepsilon)\sum_{k=n+1}^{p} v_k$$

Et en passant aux limites:

$$(1-\varepsilon)\lim_{p\to+\infty}\sum_{k=n+1}^{p}v_{k}<\lim_{p\to+\infty}\sum_{k=n+1}^{p}u_{k}<(1-\varepsilon)\lim_{p\to+\infty}\sum_{k=n+1}^{p}v_{k}\Longleftrightarrow(1-\varepsilon)R_{n}^{v}< R_{n}^{u}<(1-\varepsilon)R_{n}^{v}$$

La dernière inégalité donnant la définition de deux suites équivalentes en $+\infty$; donc $R_n^v \approx R_n^u$

2. Supposons que les séries $\sum u_n$ et $\sum v_n$ divergent

Les suites $(S_n^u)_{n\in\mathbb{N}}$ et $(S_n^v)_{n\in\mathbb{N}}$ des sommes partielles sont des suites positives, croissantes telles que $\lim_{n\to+\infty} S_n^u = \lim_{n\to+\infty} S_n^v = +\infty$.

Il faut donc montrer que $\lim_{n \to +\infty} \frac{S_n^u}{S^v} = 1$ (Ce qui n'est pas une mince affaire!!)

Soit $\varepsilon>0$ tel que, plus précisément, $0<\varepsilon<1$

Comme $u_n \underset{+\infty}{\approx} v_n$, il existe $N_0 \in \mathbb{N}$ tel que si $n > N_0$, alors $v_n (1 - \varepsilon) < u_n < v_n (1 + \varepsilon)$, et donc en additionnant, pour $n > N_0$, nous avons :

$$(1-\varepsilon)\sum_{k=N_0+1}^n v_k < \sum_{k=N_0+1}^n u_k < (1+\varepsilon)\sum_{k=N_0+1}^n v_k$$

Or, $\sum_{k=N_0+1}^n u_k = S_n^u - S_{N_0}^u$, tout comme $\sum_{k=N_0+1}^n v_k = S_n^v - S_{N_0}^v$ de telle sorte que l'inégalité devient :

$$(1-\varepsilon)\left(S_n^v - S_{N_0}^v\right) < \left(S_n^u - S_{N_0}^u\right) < (1+\varepsilon)\left(S_n^v - S_{N_0}^v\right)$$

D'où:

$$(1 - \varepsilon) \left(S_n^v - S_{N_0}^v \right) + S_{N_0}^u < S_n^u < (1 + \varepsilon) \left(S_n^v - S_{N_0}^v \right) + S_{N_0}^u$$

Il faut, maintenant, s'aventurer à quelques tripatouillages : $\rightarrow \text{ Nous avons } (1-\varepsilon) \left(S_n^v - S_{N_0}^v\right) + S_{N_0}^u = (1-\varepsilon) \, S_n^v - (1-\varepsilon) \, S_{N_0}^v + S_{N_0}^u \\ \text{ De la double inégalité } 0 < \varepsilon < 1, \text{ nous tirons } 0 < 1-\varepsilon < 1 \text{ et donc } 0 < (1-\varepsilon) \, S_{N_0}^v < S_{N_0}^v, \text{ ce qui est équivalent à } -S_{N_0}^v < -(1-\varepsilon) \, S_{N_0}^v. \text{ Et donc, nous concluons que : }$

$$(1 - \varepsilon) \left(S_n^v - S_{N_0}^v \right) + S_{N_0}^u > (1 - \varepsilon) S_n^v - S_{N_0}^v + S_{N_0}^u$$

→ De la même manière, et plus simplement, nous avons

$$\left(1+\varepsilon\right)\left(S_{n}^{v}-S_{N_{0}}^{v}\right)+S_{N_{0}}^{u}<\left(1+\varepsilon\right)S_{n}^{v}-S_{N_{0}}^{v}+S_{N_{0}}^{u}$$

→ De telle sorte que nous avons l'inégalité :

$$(1 - \varepsilon) S_n^v - S_{N_0}^v + S_{N_0}^u < S_n^u < (1 + \varepsilon) S_n^v - S_{N_0}^v + S_{N_0}^u$$

En divisant par S_n^v , nous obtenons :

$$(1 - \varepsilon) + \frac{S_{N_0}^u - S_{N_0}^v}{S_n^v} < \frac{S_n^u}{S_n^v} < (1 + \varepsilon) S_n^v + \frac{S_{N_0}^u - S_{N_0}^v}{S_n^v}$$

Comme $S_{N_0}^u - S_{N_0}^v$ est un nombre fixé et que $\lim_{n \to +\infty} S_n^v = +\infty$, nous avons $\lim_{n \to +\infty} \frac{S_{N_0}^u - S_{N_0}^v}{S_n^v} = 0$.

Il existe donc $N_1 \in \mathbb{N}$, avec $N_1 \geqslant N_0$, tel que si $n > N_1$, alors $-\varepsilon < \frac{S_{N_0}^u - S_{N_0}^v}{S_n^v} < \varepsilon$ et donc, si $n > N_1$, nous avons :

$$1 - 2\varepsilon < \frac{S_n^u}{S_n^v} < 1 + 2\varepsilon$$

Ce qui prouve bien que $\lim_{n \to +\infty} \frac{S_n^u}{S_n^v} = 1$

Ce que nous voulions

Exercice 10:

Soit la suite $(u_n)_{n\in\mathbb{N}}$ une suite de réels positifs. On construit la suite $(v_n)_{n\in\mathbb{N}}$ en écrivant : $v_n=\frac{u_n}{1+u_n}$. Démontrer que les séries $\sum_{n\in\mathbb{N}}u_n$ et $\sum_{n\in\mathbb{N}}v_n$ sont de même nature.

Remarque 10:

Le problème est donc de **connaître des séries de** « **référence** » , dont on connait bien le comportement. On connait les séries géométriques, et le théorème suivant va parler des séries de Riemann

3.4.3 Théorème : les séries de Riemann

La série $\sum_{n>0} \frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha>1$

Démonstration

L'idée de la démonstration est classique : elle est d'utiliser une intégrale et de comparer la série à une intégrale.

Soit
$$f:]0; +\infty] \to \mathbb{R}$$
 définie par $f(t) = \frac{1}{t^{\alpha}}$ où $\alpha > 0$

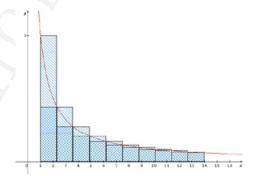


FIGURE 3.4 – Exemple d'encadrement par des rectangles

f est décroissante sur $]0; +\infty[$, et donc, pour $n \in \mathbb{N}^*$, nous avons

$$\frac{1}{(n+1)^{\alpha}} \leqslant \int_{n}^{n+1} \frac{dt}{t^{\alpha}} \leqslant \frac{1}{n^{\alpha}}$$

D'où, en sommant, nous avons :

$$\sum_{p=1}^{n} \frac{1}{(p+1)^{\alpha}} \leqslant \sum_{p=1}^{n} \int_{p}^{p+1} \frac{dt}{t^{\alpha}} \leqslant \sum_{p=1}^{n} \frac{1}{p^{\alpha}}$$

$$\sum_{p=2}^{n+1} \frac{1}{p^{\alpha}} \leqslant \sum_{p=1}^{n} \int_{p}^{p+1} \frac{dt}{t^{\alpha}} \leqslant \sum_{p=1}^{n} \frac{1}{p^{\alpha}}$$

Posons $S_n = \sum_{n=1}^n \frac{1}{p^{\alpha}}$; on a donc :

$$S_n - 1 + \frac{1}{(n+1)^{\alpha}} \leqslant \int_1^{n+1} \frac{dt}{t^{\alpha}} \leqslant S_n$$

C'est à dire :

$$S_n - 1 + \frac{1}{(n+1)^{\alpha}} \leqslant \left[\frac{t^{-\alpha+1}}{-\alpha+1}\right]_1^{n+1} \leqslant S_n$$

ou encore, après calculs,

$$S_n - 1 + \frac{1}{(n+1)^{\alpha}} \leqslant \frac{(n+1)^{-\alpha+1} - 1}{-\alpha+1} \leqslant S_n$$

- Donc, \star Si $-\alpha + 1 > 0 \iff 0 < \alpha < 1$, alors $\lim_{n \to +\infty} (n+1)^{-\alpha+1} = +\infty$, et donc, $\lim_{n \to +\infty} S_n = +\infty$ La série diverge.
 - * Si, $-\alpha + 1 < 0 \iff \alpha > 1$, nous avons $S_n \leqslant 1 \frac{1}{(n+1)^{\alpha}} + \frac{1}{(n+1)^{\alpha-1}(1-\alpha)} + \frac{1}{\alpha-1}$ Comme $-\frac{1}{(n+1)^{\alpha}} + \frac{1}{(n+1)^{\alpha-1}(1-\alpha)} \leqslant 0$, nous avons $S_n \leqslant 1 + \frac{1}{\alpha-1} = \frac{\alpha}{\alpha-1}$ La suite $(S_n)_{n\in\mathbb{N}}$ étant une suite croissante et majorée est donc convergente
 - \star Si $\alpha=1,$ la série $\sum_{n\geq 1}\frac{1}{n^\alpha}=\sum_{n\geq 1}\frac{1}{n}$ est la série harmonique, divergente.

Remarque 11:

- 1. La série $\sum_{n\geq 1}\frac{1}{n^2}$ est donc bien convergente! La recherche de sa limite est un tout autre problème (voir les exercices)
- 2. Nous venons de trouver une classe de séries importantes les séries de Riemann qui sont toutes du type $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$ avec $\alpha > 0$
- 3. La série $\sum u_n$ où $u_n = \frac{n^3 + 7n^2 \sqrt{2} \frac{\ln(n)}{n}}{4n^5 + 25n^4}$ est convergente, car $u_n \approx \frac{1}{4n^2}$

Exercice 11:

On se donne P et Q, 2 polynômes non nuls à une indéterminée et à coefficients réels. k est le premier entier supérieur à la plus grande racine réelle de Q. Etudier la série $\sum_{n>h} \frac{P(n)}{Q(n)}$

Exercice 12:

On considère la série $\sum_{n \ge 1} \frac{1}{n(n+1)(n+2)}$

- 1. Montrer au moyen d'un théorème de comparaison que cette série est convergente
- 2. Retrouver le résultat en calculant la somme.

Exercice 13:

Etudier la série de terme général $\sqrt{n^4 + 2n + 1} - \sqrt{n^4 + an}$ où a est un réel positif.

3.4.4 Théorème : séries et intégrales

L'objet de ce théorème est bien de généraliser le théorème précédent

Soient f une fonction continue par morceaux, positive et décroissante sur l'intervalle $[a;+\infty[$ avec $a\geqslant 0$ et telle que $\lim_{x\to +\infty}f\left(x\right)=0$

Alors, la série
$$\sum_{n\in\mathbb{N}}f\left(n\right)$$
 et l'intégrale $\int_{a}^{+\infty}f\left(t\right)\,dt$ ont même nature

Démonstration

Nous nous reportons au schéma 3.4

Soit $p \in \mathbb{N}$ et $x \in [p; p+1]$

Alors, de la décroissance de f, nous tirons $f(p) \ge f(x) \ge f(p+1)$, et donc, en utilisant la positivité de l'intégrale (respect de la relation d'ordre)

$$\int_{p}^{p+1} f(p) \ dx \ge \int_{p}^{p+1} f(x) \ dx \ge \int_{p}^{p+1} f(p+1) \ dx$$

C'est à dire, tout simplement,

$$f(p) \geqslant \int_{p}^{p+1} f(x) dx \geqslant f(p+1)$$

En posant N, l'entier supérieur ou égal à a et $S_p = \sum_{k=\mathbb{N}}^p f(k)$, nous avons, en sommant, nous avons :

$$\sum_{k=N}^{p} f(k) \geqslant \sum_{k=N}^{p} \int_{k}^{k+1} f(x) dx \geqslant \sum_{k=N}^{p} f(k+1)$$

C'est à dire,

$$S_p \geqslant \int_{N}^{p+1} f(x) dx \geqslant S_p + f(p+1) - f(N)$$

L'inégalité précédente permet de montrer que $\sum_{n\in\mathbb{N}}f\left(n\right)$ et $\int_{a}^{+\infty}f\left(t\right)\ dt$ ont même nature. En effet :

 $\rightarrow\,$ Etude de la divergence

* Si
$$\int_{N}^{+\infty} f(x) dx = \lim_{p \to +\infty} \int_{N}^{p} f(x) dx = +\infty$$
, c'est à dire que l'intégrale diverge, alors comme
$$\int_{N}^{p+1} f(x) dx \leqslant S_{p}, \text{ alors } \lim_{p \to +\infty} S_{p} = +\infty \text{ et donc la série } \sum_{n \in \mathbb{N}} f(n) \text{ diverge}$$

 \star Supposons que la série $\sum_{n\in\mathbb{N}}f\left(n\right)$ diverge ; alors $\lim_{p\to+\infty}S_{p}=+\infty,$ et, partant

$$\lim_{p \to +\infty} S_p + f(p+1) - f(N) = +\infty$$

Comme $S_p + f(p+1) - f(N) \leq \int_N^{p+1} f(x) dx$, nous avons $\lim_{p \to +\infty} \int_N^{p+1} f(x) dx = +\infty$, c'est à dire que l'intégrale $\int_0^{+\infty} f(t) dt$ diverge

- $\rightarrow\,$ Etude de la convergence
 - * Supposons la série $\sum_{n\in\mathbb{N}}f\left(n\right)$ convergente, comme la suite $\left(S_{p}\right)_{p\in\mathbb{N}}$ est une suite croissante, si la série $\sum_{n\in\mathbb{N}}f\left(n\right)$ a pour somme S alors $\lim_{p\to+\infty}S_{p}=S$ et, pour tout $p\in\mathbb{N},\,S_{p}\leqslant S$. De l'inégalité $\int_{N}^{p+1}f\left(x\right)\,dx\leqslant S_{p},$ nous tirons que, pour tout $p\in\mathbb{N},\,\int_{N}^{p+1}f\left(x\right)\,dx\leqslant S$ Pour tout T>1, il existe $p\in\mathbb{N}$ tel que $p\leqslant T< p+1$ et de la positivité et de la décroissance de f nous obtenons :

$$\int_{N}^{p+1} f(x) dx \leqslant \int_{N}^{T} f(x) dx < \int_{N}^{p} f(x) dx \leqslant S$$

Donc $\lim_{T\to+\infty}\int_{N}^{T}f\left(x\right)\,dx$ est finie, ce qui veut dire que l'intégrale $\int_{a}^{+\infty}f\left(t\right)\,dt$ converge

* Supposons que l'intégrale $\int_{a}^{+\infty} f(t) dt$ converge, nous avons $\int_{a}^{+\infty} f(t) dt = L$. de l'inégalité $S_p + f(p+1) - f(N) \leqslant \int_{N}^{p+1} f(x) dx$, nous tirons $S_p + f(p+1) - f(N) \leqslant \int_{N}^{+\infty} f(x) dx \leqslant L$ et donc :

$$S_p \leqslant f(N) - f(p+1) + L \leqslant f(N) + L$$

Nous mettons ainsi en évidence que la suite $(S_p)_{p\in\mathbb{N}}$ est une suite croissante et majorée (par f(N)+L), donc convergente. La série $\sum_{n\in\mathbb{N}} f(n)$ est donc convergente.

Exemple 8:

Le plus bel exemple pour ce théorème est formé par les séries de Riemann $\sum_{n\geqslant 1}\frac{1}{n^{\alpha}}$ et les intégrales $\int_{-1}^{+\infty}\frac{1}{t^{\alpha}}\,dt$

Exercice 14:

On considère la série $\sum_{n\geqslant 1}u_n$ où $u_n=\frac{\ln n}{n^{\alpha}}$ avec $\alpha>0$. Discuter suivant les valeurs de α de la convergence de la série $\sum_{n\geqslant 1}u_n$

3.4.5 Corollaire: encadrement du reste

Pour a>0, soit $f:[a;+\infty[\longrightarrow \mathbb{R}$ positive et décroissante, telle que $\int_a^{+\infty} f(x)\,dx$ converge. Notons pour $n\geqslant a$ $R_n=\sum_{k=n+1}^{+\infty} f(k)$ (c'est le reste d'ordre n)

Alors, pour tout $n \geqslant a$, nous avons

$$\int_{n+1}^{+\infty} f(x) \, dx \leqslant R_n \leqslant \int_{n}^{+\infty} f(x) \, dx$$

Démonstration

Soit $n \in \mathbb{N}$

1. En utilisant le fait que f soit positive et décroissante, nous avons, pour tout $k \ge n$, $f(k+1) \le \int_k^{k+1} f(x) \, dx$, et en passant à la sommation, pour p > n:

$$\sum_{k=n}^{p} f\left(k+1\right) \leqslant \sum_{k=n}^{p} \int_{k}^{k+1} f\left(x\right) dx \Longleftrightarrow \sum_{k=n+1}^{p+1} f\left(k\right) \leqslant \int_{n}^{p+1} f\left(x\right) dx$$

Et, en passant à la limite, nous avons :

$$\sum_{k=n+1}^{+\infty} f(k) \leqslant \int_{n}^{+\infty} f(x) dx \Longleftrightarrow R_{n} \leqslant \int_{n}^{+\infty} f(x) dx$$

2. De la même manière, nous avons, pour tout $k \geqslant n$, $\int_{k}^{k+1} f(x) dx \leqslant f(k)$, et en passant à la sommation, pour p > n:

$$\sum_{k=n+1}^{p} \int_{k}^{k+1} f\left(x\right) dx \leqslant \sum_{k=n+1}^{p} f\left(k\right) \Longleftrightarrow \int_{n+1}^{p+1} f\left(x\right) dx \leqslant \sum_{k=n+1}^{p} f\left(k\right)$$

Et, en passant à la limite, nous avons :

$$\int_{n+1}^{+\infty} f(x) dx \leqslant \sum_{k=n+1}^{+\infty} f(k) \iff \int_{n+1}^{+\infty} f(x) dx \leqslant R_n$$

En faisant la synthèse des deux inégalités, nous obtenons : $\int_{n+1}^{+\infty} f(x) dx \le R_n \le \int_n^{+\infty} f(x) dx$. Ce que nous voulions