10.7 Décomposition canonique d'un morphisme

10.7.1 Introduction

Soit G un groupe et $H \triangleright G$ un sous-groupe distingué en G. On considère la relation \mathcal{R} définie par :

$$(\forall x \in G) \ (\forall y \in G) \ (x\mathcal{R}y \iff x^{-1}y \in H)$$

C'est une relation d'équivalence, dont les classes d'équivalence sont du type $\dot{x}=xH=Hx$. Soit G/\mathcal{R} l'ensemble quotient formé par les classes d'équivalence modulo \mathcal{R} . Nous allons définir une loi de composition dans G/\mathcal{R} .

10.7.2 Proposition

Soit $\dot{x} \in G/\mathcal{R}$ et $\dot{y} \in G/\mathcal{R}$. On définit la multiplication dans G/\mathcal{R} par :

$$\dot{x} \times \dot{y} = \frac{\bullet}{xy}$$

Cette définition est indépendante du choix des représentants

Démonstration

Soient $x_1 \in \dot{x}$ et $y_1 \in \dot{y}$, c'est à dire que $\dot{x_1} = \dot{x}$ et $\dot{y_1} = \dot{y}$. Il faut montrer que $\dot{xy} = x_1\dot{y_1}$, c'est à dire que

$$(xy)^{-1}(x_1y_1) \in H$$

Il existe $s \in H$ tel que $x_1 = xs$. De même, il existe $t \in H$ tel que $y_1 = yt$. Alors :

$$(xy)^{-1}(x_1y_1) = y^{-1}x^{-1}x_1y_1 = y^{-1}x^{-1}xsyt = y^{-1}syt = (y^{-1}sy)t$$

H étant distingué en G, $y^{-1}sy \in H$ et comme H est un sous groupe, $(y^{-1}sy)$ $t \in H$, et donc

$$(xy)^{-1}(x_1y_1) \in H$$

Ce que nous voulions

10.7.3 Théorème

Soit G un groupe et $H \triangleright G$ un sous-groupe distingué en G. Pour la relation \mathcal{R} définie en 10.7.1 ci-dessus, on considère la multiplication définie sur G/\mathcal{R} en 10.7.2.

- 1. Muni de cette multiplication, G/\mathcal{R} est un groupe
- 2. La projection canonique φ :

$$\varphi: G \longrightarrow G/\mathcal{R}
x \longmapsto \varphi(x) = i$$

est un morphisme de groupe de noyau H

 G/\mathcal{R} est alors noté G/H et est appelé groupe-quotient de G par H

Démonstration

- 1. G/\mathcal{R} est un groupe
 - (a) Par définition, la multiplication est interne
 - (b) Elle est aussi associative. En effet, pour tout $\dot{x} \in G/\mathcal{R}$, tout $\dot{y} \in G/\mathcal{R}$ et tout $\dot{z} \in G/\mathcal{R}$:

$$(\dot{x}\dot{y})\,\dot{z} = (\dot{xy})\,\dot{z} = (\dot{xy}z) = \dot{x}\,(\dot{y}z) = \dot{x}\,(\dot{y}\dot{z})$$

(c) L'élément neutre est \dot{e}

- (d) Le symétrique de $\dot{x} \in G/\mathcal{R}$ est $\dot{x}^{-1} \in G/\mathcal{R}$
- 2. La projection canonique φ est un morphisme de groupe La démonstration est évidente :

$$\varphi(xy) = \dot{x}\dot{y} = \dot{x}\dot{y} = \varphi(x)\,\varphi(y)$$

Si $x \in \ker \varphi$, alors, $\varphi(x) = \dot{e}$ et donc $x \in \dot{e} = H$

Remarque 27:

Si G est commutatif, alors G/H est aussi commutatif.

En effet, pour $\dot{x} \in G/H$ et $\dot{y} \in G/H$:

$$\dot{x}\dot{y} = \frac{\bullet}{xy}^{\text{Commutativité}} \frac{\bullet}{yx} = \dot{y}\dot{x}$$

10.7.4 Proposition

Soient G et G' 2 groupes et $f: G \longrightarrow G'$ un morphisme de groupe. Alors, la relation S définie sur G par :

$$(\forall x \in G) (\forall y \in G) (xSy \iff f(x) = f(y))$$

est une relation d'équivalence

Une définition équivalente pour ${\cal S}$ est :

$$(\forall x \in G) (\forall y \in G) (xSy \iff xy^{-1} \in \ker f)$$

Démonstration

Que $\mathcal S$ soit une relation d'équivalence est évident.

Montrons que nous pouvons avoir une autre définition, équivalente.

En posant e' l'élément neutre de G' :

$$xSy \iff f(x) = f(y) \iff f(x)[f(y)]^{-1} = e' \iff f(xy^{-1}) = e' \iff xy^{-1} \in \ker f$$

10.7.5 Proposition

Soient G et G' deux groupes et $f:G\longrightarrow G'$ un morphisme de groupe.

Alors, l'application h:

$$h: G/\ker f \longrightarrow f(G)$$

$$\dot{x} \longmapsto h(\dot{x}) = f(x)$$

est un isomorphisme

Démonstration

Il faut d'abord dire que f(G) (parfois aussi noté Im f) est un sous-groupe de G' de neutre e'

1. Tout d'abord, h est un morphisme. En effet, pour tout $\dot{x} \in G/\ker f$ et tout $\dot{y} \in G/\ker f$:

$$h(\dot{x}\dot{y}) = h(\dot{x}\dot{y}) = f(xy) = f(x) f(y) = h(\dot{x}) \times h(\dot{y})$$

2. Ensuite, h est injective :

$$h(\dot{x}) = e' \iff f(x) = e' \iff x \in \ker f \iff x \in \dot{e} \iff \dot{x} = \dot{e}$$

3. Et, pour finir, h est surjective :

En effet, soit $y \in f(G)$, il existe $x \in G$ tel que y = f(x), et nous avons donc :

$$h\left(\dot{x}\right) = f\left(x\right) = y$$

Donc, pour tout $y \in f(G)$, il existe $\dot{x} \in G/\ker f$ tel que $h(\dot{x}) = y$

10.7.6 Décomposition canonique d'un morphisme $f: G \longrightarrow G'$

1. On considère la projection canonique φ :

$$\varphi: G \longrightarrow G/\ker f
x \longmapsto \varphi(x) = \dot{x}$$

2. De même, considérons l'insertion i définie par :

$$i: f(G) \longrightarrow G'$$

 $y \longmapsto i(y) = y$

C'est l'application identique restreinte à f(G)

3. Pour terminer, considérons h:

$$h: G/\ker f \longrightarrow f(G)$$

 $\dot{x} \longmapsto h(\dot{x}) = f(x)$

4. Alors, pour tout $x \in G$, nous avons $f(x) = i \circ h \circ \varphi(x)$ qu'il est possible de résumer dans le diagramme suivant. On dit qu'il est commutatif.

$$G \xrightarrow{f} G'$$

$$\varphi \downarrow \qquad \qquad \uparrow i$$

$$G/\ker f \xrightarrow{h} f(G)$$

Exemple 13:

On considère un corps \mathbb{K} (\mathbb{K} étant mis pour \mathbb{R} ou \mathbb{C}), et le \mathbb{K} -espace vectoriel de dimension n \mathbb{K}^n .

- 1. $\operatorname{GL}_n(\mathbb{K})$ est le groupe linéaire de \mathbb{K} . C'est le groupe des matrices inversibles de dimension n à coefficients dans \mathbb{K} , c'est à dire que, pour tout $M \in \operatorname{GL}_n(\mathbb{K})$, le déterminant de M noté det M est non nul
- 2. (\mathbb{K}^*,\times) est un groupe multiplicatif de neutre 1
- 3. Soit:

$$\begin{cases}
\det: \operatorname{GL}_n\left(\mathbb{K}\right) & \longrightarrow & \mathbb{K}^* \\
M & \longmapsto & \det M
\end{cases}$$

Par les propriétés du déterminant, det est un morphisme de groupe

- 4. Le noyau de det est l'ensemble des matrices de déterminant 1. C'est <u>le groupe spécial linéaire</u> $\mathrm{SL}_n\left(\mathbb{K}\right)$
- 5. En fait, l'application déterminant det est un morphisme surjectif, c'est à dire que nous avons $\det\left(\operatorname{GL}_n\left(\mathbb{K}\right)\right)=\mathbb{K}^*.$

En effet, soient $\lambda \in \mathbb{K}^*$ et $\{e_1, \dots, e_n\}$ la base canonique de \mathbb{K}^n .

Soit $u: \mathbb{K}^n \longrightarrow \mathbb{K}^n$ une application linéaire telle que $u(e_1) = \lambda e_1$ et pour $2 \leq i \leq n$, $u(e_i) = e_i$. Si M est la matrice de u dans la base canonique $\{e_1, \dots, e_n\}$, nous avons :

$$M = \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & 0 & \ddots & 0 \\ 0 & \cdots & \cdots & 1 \end{pmatrix}$$

Le déterminant de M est det $M=\left|\begin{array}{cccc} \lambda & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & 0 & \ddots & 0 \\ 0 & \cdots & \cdots & 1 \end{array}\right|=\lambda \neq 0.$ Donc $M\in \mathrm{GL}_n\left(\mathbb{K}\right)$

6. D'après le théorème de décomposition 10.7.6, nous avons le schéma :

$$GL_{n}\left(\mathbb{K}\right) \xrightarrow{\det} \mathbb{K}^{*}$$

$$\varphi \downarrow \qquad \qquad \uparrow_{\mathrm{Id}_{\mathbb{K}^{*}}}$$

$$\left(GL_{n}\left(\mathbb{K}\right)/\mathrm{SL}_{n}\left(\mathbb{K}\right)\right) \longrightarrow \mathbb{K}^{*}$$

D'après ce même théorème, le quotient $\mathrm{GL}_n(\mathbb{K})/\mathrm{SL}_n(\mathbb{K})$ est isomorphe à \mathbb{K}^*

10.7.7Quelques exercices

Exercice 28:

On considère une groupe G tel qu'il existe $n \in \mathbb{N}^*$ tel que $(\forall (x,y) \in G \times G) ((xy)^n = x^n y^n)$ — On note $G^{(n)} = \{y \in G \text{ tels que } \exists g \in G \text{ tel que } y = g^n\}$

- Et on note $G_{(n)} = \{x \in G \text{ tels que } x^n = e\}$ où e est le neutre de G. En fait, $G_{(n)}$ est l'ensemble des éléments d'ordre n

Vérifier que $G_{(n)}$ et $G^{(n)}$ sont des sous groupes distingués de G. Puis, démontrez que $G/G_{(n)}$ est isomorphe à $G^{(n)}$