Chapitre 3

Notions sur les fonctions à valeurs complexes

Volontairement, ce chapitre n'est qu'une introduction aux fonctions complexes. Nous faisons d'une part, une synthèse des fonctions de $\mathbb R$ dans $\mathbb C$ et de l'autre un exposé des définitions de base; nous n'étudierons pas, en particulier, l'intégration des fonctions de variable complexe.

3.1 Rappels sur les fonctions de $\mathbb R$ dans $\mathbb C$

Ce paragraphe est une synthèse de ce qui a été déjà vu dans différents chapitres précédents. Il y aura donc peu de démonstrations

On met en évidence que l'étude des fonctions de $\mathbb R$ dans $\mathbb C$, en se concentrant sur les parties réelles et imaginaires et en prenant néanmoins quelques précautions élémentaires, se réduisent à l'étude des fonctions de $\mathbb R$ dans $\mathbb R$

3.1.1 Définition

Une fonction complexe d'une variable réelle est une application d'un sous ensemble $\mathcal{D} \subset \mathbb{R}$ dans \mathbb{C} qui, à un nombre $x \in \mathcal{D}$ fait correspondre $F(x) \in \mathbb{C}$

$$\left\{ \begin{array}{ccc} F: \mathcal{D} & \longrightarrow & \mathbb{C} \\ x & \longmapsto & F(x) \end{array} \right.$$

L'ensemble \mathcal{D}_F est appelé ensemble de définition de F

Remarque 1:

1. Si $\mathcal{D} \subset \mathbb{R}$ est un sous-ensemble de \mathbb{R} alors $F: \mathcal{D} \longrightarrow \mathbb{C}$ est une application, à tout $x \in \mathcal{D}$ fait correspondre un nombre complexe F(x) = f(x) + ig(x).

Nous avons, en fait, f(x) = Re(F(x)) et g(x) = Im(F(x)).

f et g sont des fonctions réelles d'une variable réelle définies sur l'ensemble \mathcal{D} . Nous avons donc $f:\mathcal{D}\longrightarrow\mathbb{R}$ et $g:\mathcal{D}\longrightarrow\mathbb{R}$

2. Réciproquement, la donnée de 2 applications $f: \mathcal{D} \longrightarrow \mathbb{R}$ et $g: \mathcal{D} \longrightarrow \mathbb{R}$ définit une application $F: \mathcal{D} \longrightarrow \mathbb{C}$. C'est l'application

$$\left\{ \begin{array}{ccc} F: \mathcal{D} & \longrightarrow & \mathbb{C} \\ & x & \longmapsto & F\left(x\right) = f\left(x\right) + ig\left(x\right) \end{array} \right.$$

3. Si $F: \mathcal{D} \longrightarrow \mathbb{C}$ est l'application définie par F(x) = f(x) + ig(x), l'application conjuguée de F est l'application \overline{F} définie par $\overline{F}(x) = f(x) - ig(x)$, c'est à dire que $\overline{F}(x) = \overline{F(x)}$

4. La topologie de \mathbb{C} est la topologie induite par celle du module d'un nombre complexe, comme celle de \mathbb{R} est induite par la valeur absolue d'un nombre réel

3.1.2 Définition de la limite

Soit $F: \mathbb{R} \longrightarrow \mathbb{C}$ une fonction complexe d'une variable réelle. Soit $x_0 \in \mathbb{R}$, et on suppose que F est définie dans un voisinage de x_0 , sauf, peut-être en x_0 . On dit que la fonction $F: \mathbb{R} \longrightarrow \mathbb{C}$ admet une limite $L \in \mathbb{C}$ en x_0 si :

$$(\forall \varepsilon > 0) (\exists \eta_{\varepsilon}) (|x - x_0| < \eta_{\varepsilon} \Longrightarrow |F(x) - L| < \varepsilon)$$

On écrit alors $\lim_{x\to x_0}F\left(x\right)=L$

3.1.3 Proposition

Soit $F: \mathbb{R} \longrightarrow \mathbb{C}$ une fonction complexe d'une variable réelle.

Pour tout $x \in \mathcal{D}_F$, nous écrivons F(x) = f(x) + ig(x)

Soit $x_0 \in \mathbb{R}$, et on suppose que F est définie dans un voisinage de x_0 , sauf, peut-être en x_0 .

La fonction $F:\mathbb{R}\longrightarrow\mathbb{C}$ admet une limite $L=A+iB\in\mathbb{C}$ en x_0 si et seulement si

$$\lim_{x \to x_0} f\left(x\right) = \lim_{x \to x_0} \operatorname{Re}\left(F\left(x\right)\right) = A = \operatorname{Re}\left(L\right) \text{ et } \lim_{x \to x_0} g\left(x\right) = \lim_{x \to x_0} \operatorname{Im}\left(F\left(x\right)\right) = B = \operatorname{Im}\left(L\right)$$

Démonstration

La démonstration a déjà été faite en L_1 et réside surtout dans le fait que $|f(x) - A| \le |F(x) - L|$ et $|g(x) - B| \le |F(x) - L|$

3.1.4 Proposition

Soient $F:\mathbb{R}\longrightarrow\mathbb{C}$ et $G:\mathbb{R}\longrightarrow\mathbb{C}$ 2 fonctions complexes d'une variable réelle. Soit $x_0\in\mathbb{R}$, et nous supposons que F et G sont définies dans un voisinage de x_0 , sauf, peut-être en x_0 . Nous supposons que $\lim_{x\to x_0}F(x)=L_1$ et $\lim_{x\to x_0}G(x)=L_2$. Alors :

1. La limite de la somme est la somme des limites, c'est à dire :

$$\lim_{x \to x_0} (F(x) + G(x)) = \lim_{x \to x_0} F(x) + \lim_{x \to x_0} G(x) = L_1 + L_2$$

2. La limite du produit est le produit des limites, c'est à dire :

$$\lim_{x \to x_0} \left(F\left(x \right) \times G\left(x \right) \right) = \lim_{x \to x_0} F\left(x \right) \times \lim_{x \to x_0} G\left(x \right) = L_1 \times L_2$$

3. Si $L_2 \neq 0$, la limite du quotient est le quotient des limites, c'est à dire :

$$\lim_{x \to x_0} \left(\frac{F(x)}{G(x)} \right) = \frac{\lim_{x \to x_0} F(x)}{\lim_{x \to x_0} G(x)} = \frac{L_1}{L_2}$$

Démonstration

Nous n'utiliserons ici que les théorèmes des fonctions numériques d'une variable réelle à valeurs dans \mathbb{R} Nous appelons, pour tout $x \in \mathbb{R}$, F(x) = f(x) + ig(x) et G(x) = h(x) + ik(x). Nous écrivons $L_1 = A_1 + iB_1$ et $L_2 = A_2 + iB_2$

1. La somme

Nous avons F(x) + G(x) = (f(x) + h(x)) + i(g(x) + k(x))

Comme
$$\lim_{x \to x_0} (f(x) + h(x)) = A_1 + A_2$$
 et $\lim_{x \to x_0} (g(x) + k(x)) = B_1 + B_2$, il est clair que $\lim_{x \to x_0} (F(x) + G(x)) = (A_1 + A_2) + i(B_1 + B_2) = L_1 + L_2$

2. Le produit

Regardons, maintenant $F(x) \times G(x) = (f(x) + ig(x)) \times (h(x) + ik(x))$

$$F(x) \times G(x) = (f(x) h(x) - g(x) k(x)) + i (f(x) k(x) + g(x) h(x))$$

Nous avons:

$$\begin{cases} \lim_{x \to x_0} (f(x) h(x) - g(x) k(x)) = A_1 A_2 - B_1 B_2 \\ \lim_{x \to x_0} (f(x) k(x) + g(x) h(x)) = A_1 B_2 + B_1 A_2 \end{cases}$$

Donc $\lim_{x \to x_0} F(x) \times G(x) = (A_1 A_2 - B_1 B_2) + i (A_1 B_2 + B_1 A_2) = (A_1 + i B_1) (A_2 + i B_2) = L_1 \times L_2$

3. Le quotient

Si $L_2 \neq 0$, alors $|L_2| > 0$ et $\frac{F(x)}{G(x)} = \frac{f(x) + ig(x)}{h(x) + ik(x)}$. Nous avons alors:

$$\frac{F(x)}{G(x)} = \frac{f(x) + ig(x)}{h(x) - ik(x)}
= \frac{(f(x) + ig(x))(h(x) - ik(x))}{(h(x) + ik(x))(h(x) - ik(x))}
= \frac{(f(x) h(x) + g(x)k(x)) + i(g(x)h(x) - f(x)k(x))}{(h(x))^2 + (k(x))^2}
= \frac{(f(x)h(x) + g(x)k(x))}{(h(x))^2 + (k(x))^2} + i\frac{(g(x)h(x) - f(x)k(x))}{(h(x))^2 + (k(x))^2}$$

Nous avons

$$\lim_{x \to x_0} \frac{(f(x) h(x) + g(x) k(x))}{(h(x))^2 + (k(x))^2} = \frac{A_1 A_2 + B_1 B_2}{A_2^2 + B_2^2}$$

Et

$$\lim_{x \to x_0} \frac{(g(x) h(x) - f(x) k(x))}{(h(x))^2 + (k(x))^2} = \frac{B_1 A_2 - A_1 B_2}{A_2^2 + B_2^2}$$

C'est à dire que

$$\lim_{x \to x_0} \frac{F(x)}{G(x)} = \frac{A_1 A_2 + B_1 B_2}{A_2^2 + B_2^2} + i \frac{B_1 A_2 - A_1 B_2}{A_2^2 + B_2^2}$$

$$= \frac{A_1 A_2 + B_1 B_2 + i (B_1 A_2 - A_1 B_2)}{A_2^2 + B_2^2} = \frac{L_1 \times \overline{L_2}}{|L_2|^2}$$

$$= \frac{L_1 \times \overline{L_2}}{L_2 \times \overline{L_2}} = \frac{L_1}{L_2}$$

Ce que nous voulions

Exemple 1:

1. Supposons que $\lim_{x\to x_0}F\left(x\right)=L,$ que dire de $\lim_{x\to x_0}\overline{F}\left(x\right)$?

Nous appelons F(x) = f(x) + ig(x) et L = A + iB.

D'après 3.1.3, comme $\lim_{x \to x_0} F(x) = L$, nous avons $\lim_{x \to x_0} f(x) = A$ et $\lim_{x \to x_0} g(x) = B$.

Ce qui fait que $\lim_{x \to x_0} (f(x) - ig(x)) = A - iB$ et donc $\lim_{x \to x_0} \overline{F}(x) = \lim_{x \to x_0} \overline{F(x)} = A - iB = \overline{L}$

La limite du conjugué de F est le conjugué de la limite

2. Supposons toujours que $\lim_{x\to x_0} F(x) = L$, que dire de $\lim_{x\to x_0} |F(x)|$?

De
$$F(x) = f(x) + ig(x)$$
, nous tirons $|F(x)| = \sqrt{(f(x))^2 + (g(x))^2}$. Classiquement, $\lim_{x \to x_0} \sqrt{(f(x))^2 + (g(x))^2} = \sqrt{A^2 + B^2} = |L|$

Donc, si
$$\lim_{x \to x_0} F(x) = L$$
, alors $\lim_{x \to x_0} |F(x)| = |L|$

3.1.5 Définition de la continuité

Soit $F:\mathbb{R}\longrightarrow\mathbb{C}$ une fonction complexe d'une variable réelle. Soit $x_0\in\mathbb{R}$, et on suppose que F est définie dans un voisinage de x_0 et que $F\left(x_0\right)$ existe. On dit que la fonction $F:\mathbb{R}\longrightarrow\mathbb{C}$ est continue en x_0 si et seulement si $\lim_{x\to x_0}F\left(x\right)=F\left(x_0\right)$

3.1.6 Proposition

Soit $F:\mathbb{R}\longrightarrow\mathbb{C}$ une fonction complexe d'une variable réelle. Pour tout $x\in\mathcal{D}_F$, nous écrivons F(x)=f(x)+ig(x)Soit $x_0\in\mathbb{R}$, et on suppose que F est définie dans un voisinage de x_0 et que $F(x_0)$ existe. La fonction $F:\mathbb{R}\longrightarrow\mathbb{C}$ est continue en x_0 si et seulement si les fonctions f et g sont continues en x_0

3.1.7 Conséquences immédiates

Soient $F: \mathbb{R} \longrightarrow \mathbb{C}$ et $G: \mathbb{R} \longrightarrow \mathbb{C}$ 2 fonctions complexes d'une variable réelle continues en $x_0 \in \mathbb{R}$. Alors :

- 1. La fonction F + G est continue en x_0
- 2. La fonction $F \times G$ est continue en x_0
- 3. Pour tout $\lambda \in \mathbb{C}$, la fonction λF est continue en x_0
- 4. Si $G\left(x_{0}\right)\neq0$, la fonction $\dfrac{F}{G}$ est continue en x_{0}

Démonstration

Ceci résulte bien entendu des résultats sur les limites vus en 3.1.4

3.1.8 Dérivation

Soit $F:\mathbb{R}\longrightarrow\mathbb{C}$ une fonction complexe d'une variable réelle de domaine de définition \mathcal{D}_F . On dit que F est dérivable en $x_0\in\mathcal{D}_F$ si et seulement si $\lim_{x\to x_0}\frac{F\left(x\right)-F\left(x_0\right)}{x-x_0}$ existe. Nous notons $F'\left(x_0\right)$ cette dérivée

3.1.9 Proposition

Soit $F:\mathbb{R}\longrightarrow\mathbb{C}$ une fonction complexe d'une variable réelle de domaine de définition \mathcal{D}_F . Nous notons $F\left(x\right)=f\left(x\right)+ig\left(x\right)$

Alors F est dérivable en $x_0 \in \mathcal{D}_F$ si et seulement si f et g sont dérivables en x_0 et nous avons :

$$F'(x_0) = f'(x_0) + ig'(x_0)$$

Démonstration

Ecrivons différemment le rapport $\frac{F(x) - F(x_0)}{x - x_0}$.

$$\frac{F(x) - F(x_0)}{x - x_0} = \frac{f(x) + ig(x) - (f(x_0) + ig(x_0))}{x - x_0} = \frac{f(x) - f(x_0)}{x - x_0} + i\frac{g(x) - g(x_0)}{x - x_0}$$

Ainsi, $\lim_{x \to x_0} \frac{F(x) - F(x_0)}{x - x_0}$ existe si et seulement si $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ et $\lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0}$ existent, c'est à dire si et seulement si $f'(x_0)$ et $g'(x_0)$ existent. Nous avons alors, dans ces cas $F'(x_0) = f'(x_0) + ig'(x_0)$

Remarque 2:

Les résultats relatifs aux opérations sur les fonctions dérivables (addition, multiplication, quotient) sont les mêmes que pour une fonction numérique d'une variable réelle

1.
$$(F+G)'=F'+G'$$

1.
$$(F+G)' = F' + G'$$
 2. $(F \times G)' = F'G + G'F$

$$3. \left(\frac{F}{G}\right)' = \frac{F'G - G'F}{G^2}$$

Exemple 2:

Soit $\lambda \in \mathbb{C}$ et $F(x) = e^{\lambda x}$. Calculons F'(x). On appelle $\lambda = \alpha + i\beta$. Alors $F(x) = e^{(\alpha + i\beta)x} = e^{\alpha x} (\cos \beta x + i \sin \beta x)$. Nous avons donc:

$$F'(x) = \alpha e^{\alpha x} (\cos \beta x + i \sin \beta x) + e^{\alpha x} (-\beta \sin \beta x + i\beta \cos \beta x)$$

$$= e^{\alpha x} (\alpha (\cos \beta x + i \sin \beta x) + (-\beta \sin \beta x + i\beta \cos \beta x))$$

$$= e^{\alpha x} [(\alpha + i\beta) \cos \beta x + i (\alpha + i\beta) \sin \beta x]$$

$$= (\alpha + i\beta) e^{\alpha x} [\cos \beta x + i \sin \beta x]$$

$$= \lambda e^{\alpha x} \times e^{i\beta x} = \lambda e^{\alpha x + i\beta x}$$

$$= \lambda e^{\lambda x}$$

Et donc,
$$(e^{\lambda x})' = \lambda e^{\lambda x}$$

3.1.10 Intégration

Soit $F:\mathbb{R}\longrightarrow\mathbb{C}$ une fonction complexe d'une variable réelle de domaine de définition \mathcal{D}_F . Nous notons F(x) = f(x) + iq(x)

Alors F est intégrable sur le segment $[a;b]\subset \mathcal{D}_F$ si et seulement si f et g sont intégrables sur le segment $[a;b]\subset \mathcal{D}_F.$ S'il en est ainsi, nous poserons, par définition :

$$\int_{a}^{b} F(x) dx = \int_{a}^{b} f(x) dx + i \int_{a}^{b} g(x) dx$$

Remarque 3:

1. De la définition, nous déduisons immédiatement que :

(a)
$$\int_{a}^{b} (F(x) + G(x)) dx = \int_{a}^{b} F(x) dx + \int_{a}^{b} G(x) dx$$

(b) Pour tout
$$\lambda \in \mathbb{C}$$
, nous avons $\int_{a}^{b} \lambda F(x) dx = \lambda \int_{a}^{b} F(x) dx$

(c) Nous vérifions aussi aisément que
$$\overline{\int_a^b F(x) dx} = \int_a^b \overline{F(x)} dx = \int_a^b \overline{F(x)} dx$$

Pour démontrer ces résultats, il n'y a rien de difficile : il suffit d'écrire $\lambda = \alpha + i\beta$ et F(x) =f(x) + ig(x) et d'utiliser les théorèmes d'intégrations des fonctions numériques réelles d'une variable réelle.

2. Nous devons aussi remarquer que, pour les parties réelles et imaginaires :

$$\rightarrow \operatorname{Re}\left(\int_{a}^{b} F\left(x\right) \, \mathrm{d}x\right) = \int_{a}^{b} \operatorname{Re}\left(F\left(x\right)\right) \, \mathrm{d}x \qquad \rightarrow \operatorname{Im}\left(\int_{a}^{b} F\left(x\right) \, \mathrm{d}x\right) = \int_{a}^{b} \operatorname{Im}\left(F\left(x\right)\right) \, \mathrm{d}x$$

Exemple 3:

 \triangleright Il faut bien noter que, d'après la définition 3.1.10, pour calculer l'intégrale d'une fonction F: $\mathbb{R} \longrightarrow \mathbb{C}$ il faut écrire cette fonction sous la forme F(x) = f(x) + ig(x)

$$ightharpoonup$$
 Calculons, par exemple $\int_a^b \frac{\mathrm{d}x}{ix+1}$

$$\int_{a}^{b} \frac{dx}{ix+1} = \int_{a}^{b} \frac{(1-ix)}{(ix+1)(1-ix)} dx = \int_{a}^{b} \frac{(1-ix)}{1+x^{2}} dx$$

$$= \int_{a}^{b} \frac{1}{1+x^{2}} dx - i \int_{a}^{b} \frac{x}{1+x^{2}} dx$$

$$= \left[\arctan x\right]_{a}^{b} - \frac{i}{2} \left[\ln (1+x^{2})\right]_{a}^{b}$$

$$= \left(\arctan b - \arctan a\right) - \frac{i}{2} \ln \left(\frac{1+b^{2}}{1+a^{2}}\right)$$

Proposition 3.1.11

Soit $F:\mathbb{R}\longrightarrow\mathbb{C}$ une fonction complexe d'une variable réelle de domaine de définition \mathcal{D}_F intégrable sur \mathcal{D}_F Alors:

$$\left| \int_{a}^{b} F(x) \, dx \right| \leq \int_{a}^{b} |F(x)| \, dx$$

Démonstration

Ici, il faut bien remarquer que ce ne sont plus les valeurs absolues, mais des modules de nombres complexes. Cette démonstration a déjà été faite dans le cours de L_1

1. Supposons que $\int_{a}^{b} F(x) dx = 0$, alors $\left| \int_{a}^{b} F(x) dx \right| = 0$, et comme $\int_{a}^{b} |F(x)| dx \ge 0$, nous avons donc

$$\left| \int_{a}^{b} F(x) \, dx \right| \leq \int_{a}^{b} |F(x)| \, dx$$

2. Supposons, maintenant que $\int_{a}^{b} F(x) dx \neq 0$

 \implies Soit $\theta \in [0; 2\pi[$, alors $e^{-i\theta} \int_{-\pi}^{b} F(x) dx = \int_{-\pi}^{b} e^{-i\theta} F(x) dx$. En particulier, nous avons aussi :

$$\operatorname{Re}\left(e^{-i\theta}\int_{a}^{b}F\left(x\right)\,\mathrm{d}x\right)=\int_{a}^{b}\operatorname{Re}\left(e^{-i\theta}F\left(x\right)\right)\,\mathrm{d}x$$

 \implies Pour tout $z \in \mathbb{C}$, nous avons Re $(e^{-i\theta}z) \leq |z|$

En effet, on peut écrire z sous forme trigonométrique : $z = |z| e^{i \arg z}$ et donc

$$e^{-i\theta}z = e^{-i\theta} |z| e^{i \operatorname{arg} z} = e^{-i(\theta - \operatorname{arg} z)} |z|$$

Comme Re $\left(e^{-i\theta}z\right)=|z|\cos\left(\theta-\arg z\right)$, nous avons donc, puisque $\cos\left(\theta-\arg z\right)\leqslant 1$, Re $\left(e^{-i\theta}z\right)\leqslant|z|$

 \implies Nous pouvons donc appliquer cette inégalité à Re $\left(e^{-i\theta}F\left(x\right)\right)$ d'où nous pouvons conclure que Re $\left(e^{-i\theta}F\left(x\right)\right) \leqslant \left|F\left(x\right)\right|$

Comme nous avons affaire à des fonctions numériques d'une variable réelle, nous avons

$$\int_{a}^{b} \operatorname{Re}\left(e^{-i\theta}F\left(x\right)\right) dx \leqslant \int_{a}^{b} |F\left(x\right)| dx$$

 \implies Comme $\int_{a}^{b} F(x) dx \neq 0$, nous pouvons écrire $\int_{a}^{b} F(x) dx$ comme un nombre complexe avec un module et un argument.

Si nous posons $\theta = \arg\left(\int_a^b F(x) dx\right)$, nous avons $\int_a^b F(x) dx = \left|\int_a^b F(x) dx\right| e^{i\theta}$ et donc $e^{-i\theta} \int_{a}^{b} F(x) dx = \left| \int_{a}^{b} F(x) dx \right|$

 \Longrightarrow De là, nous déduisons que $e^{-i\theta}\int_{a}^{b}F\left(x\right) \,\mathrm{d}x$ est un nombre réel et que donc,

$$\operatorname{Re}\left(e^{-i\theta}\int_{a}^{b}F\left(x\right)\,\mathrm{d}x\right) = \left|\int_{a}^{b}F\left(x\right)\,\mathrm{d}x\right|$$

 $\Longrightarrow \text{Nous avons démontré que } \operatorname{Re}\left(e^{-i\theta}\int_{a}^{b}F\left(x\right)\,\mathrm{d}x\right) = \int_{a}^{b}\operatorname{Re}\left(e^{-i\theta}F\left(x\right)\right)\,\mathrm{d}x \text{ et ensuite que } \\ \int_{a}^{b}\operatorname{Re}\left(e^{-i\theta}F\left(x\right)\right)\,\mathrm{d}x \leqslant \int_{a}^{b}\left|F\left(x\right)\right|\,\mathrm{d}x, \text{ nous pouvons donc en déduire que }$

$$\left| \int_{a}^{b} F(x) \, dx \right| \leqslant \int_{a}^{b} |F(x)| \, dx$$

Remarque 4:

- 1. Au passage, nous avons démontré que, pour tout $z \in \mathbb{C}$ et tout $\theta \in [0; 2\pi[$, nous avons Re $(e^{-i\theta}z) \leq |z|$.
- 2. Rappelons les inégalités vraies, pour tout $z \in \mathbb{C}$, $|\operatorname{Re}(z)| \leq |z|$ et $|\operatorname{Im}(z)| \leq |z|$

3.1.12 Suites de fonctions complexes

Soit $\mathcal F$ l'ensemble des fonctions numériques d'une variable réelle à valeurs complexes et définies sur $\mathcal D \subset \mathbb R$ Une suite de ces fonctions est une application de l'ensemble $\mathbb N$ dans l'ensemble $\mathcal F$:

$$\left\{ \begin{array}{ccc} (F_n)_{n\in\mathbb{N}} : \mathbb{N} & \longrightarrow & \mathcal{F} \\ n & \longmapsto & F_n \end{array} \right.$$

Où, pour tout $x\in\mathcal{D}$, $F_{n}\left(x\right)=f_{n}\left(x\right)+ig_{n}\left(x\right)$

Remarque 5:

Ainsi, la donnée d'une suite de fonctions d'une variable réelle à valeurs complexes $(F_n)_{n\in\mathbb{N}}$ équivaut à la donnée de 2 suites $(f_n)_{n\in\mathbb{N}}$ et $(g_n)_{n\in\mathbb{N}}$ de fonctions numériques réelles d'une variable réelle

3.1.13 Convergence simple des suites de fonctions complexes

Soit $(F_n)_{n\in\mathbb{N}}$ une suite de fonctions numériques d'une variable réelle à valeurs complexes et définies sur $\mathcal{D}\subset\mathbb{R}$

1. La suite $(F_n)_{n\in\mathbb{N}}$ converge simplement sur $\mathcal{D}\subset\mathbb{R}$ vers la fonction F=f+ig définie sur $\mathcal{D}\subset\mathbb{R}$ si et seulement si :

$$(\forall x \in \mathcal{D}) (\forall \varepsilon > 0) (\exists N \in \mathbb{N}) (\forall n \in \mathbb{N}) ((n \geqslant N) \Longrightarrow (|F_n(x) - F(x)| < \varepsilon))$$

2. La suite $(F_n)_{n\in\mathbb{N}}$ converge simplement sur $\mathcal{D}\subset\mathbb{R}$ vers la fonction F=f+ig si et seulement si la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur $\mathcal{D}\subset\mathbb{R}$ vers la fonction f et la suite $(g_n)_{n\in\mathbb{N}}$ converge simplement sur $\mathcal{D}\subset\mathbb{R}$ vers la fonction g

3.1.14 Convergence uniforme des suites de fonctions complexes

Soit $(F_n)_{n\in\mathbb{N}}$ une suite de fonctions numériques d'une variable réelle à valeurs complexes et définies sur $\mathcal{D}\subset\mathbb{R}$

1. La suite $(F_n)_{n\in\mathbb{N}}$ converge uniformément sur $\mathcal{D}\subset\mathbb{R}$ vers la fonction F=f+ig définie sur $\mathcal{D}\subset\mathbb{R}$ si et seulement si :

$$(\forall \varepsilon > 0) (\exists N \in \mathbb{N}) (\forall n \in \mathbb{N}) (\forall x \in \mathcal{D}) ((n \geqslant N) \Longrightarrow (|F_n(x) - F(x)| < \varepsilon))$$

2. La suite $(F_n)_{n\in\mathbb{N}}$ converge uniformément sur $\mathcal{D}\subset\mathbb{R}$ vers la fonction F=f+ig si et seulement si la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur $\mathcal{D}\subset\mathbb{R}$ vers la fonction f et la suite $(g_n)_{n\in\mathbb{N}}$ converge uniformément sur $\mathcal{D}\subset\mathbb{R}$ vers la fonction g

Remarque 6:

1. Nous pouvons aussi utiliser une autre définition pour la convergence uniforme :

$$\left(\forall \varepsilon > 0\right)\left(\exists N \in \mathbb{N}\right)\left(\forall n \in \mathbb{N}\right)\left(\left(n \geqslant N\right) \Longrightarrow \left(\sup_{x \in \mathcal{D}}\left|F_{n}\left(x\right) - F\left(x\right)\right| < \varepsilon\right)\right)$$

2. Si la suite $(F_n)_{n\in\mathbb{N}}$ est une suite de fonctions continues convergeant uniformément sur $\mathcal{D}\subset\mathbb{R}$ vers la fonction F définie sur $\mathcal{D}\subset\mathbb{R}$, alors F est continue