Le théorème de Féjer 9.4

9.4.1 Lemme préparatoire : le noyau de Dirichlet

On appelle noyau de Dirichlet l'expression $D_{N}\left(x\right)=\sum_{x=0}^{N}e^{ikx}$

$$1. \ \frac{1}{2\pi} \int_{-\pi}^{\pi} D_N(t) \ \mathrm{d}t = 1$$

2. Le noyau de Dirichlet est périodique de période 2π et pair

3.
$$D_n(x) = \frac{\sin(n + \frac{1}{2})x}{\sin\frac{x}{2}} = \frac{\sin(2n + 1)\frac{x}{2}}{\sin\frac{x}{2}}$$

Démonstration

1. Il est facile de démontrer que $\frac{1}{2\pi}\int_{-\pi}^{\pi}D_{N}\left(t\right)\,\mathrm{d}t=1$, puisque, si $k\neq0$, $\int_{-\pi}^{\pi}e^{ikt}\,\mathrm{d}t=0$ et si k=0, $\int_{-\pi}^{\pi} e^{i0t} dt = \int_{-\pi}^{\pi} dt = 2\pi, \text{ et donc :}$

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} D_N(t) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\sum_{k=-N}^{N} e^{ikt} \right) dt = \sum_{k=-N}^{N} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ikt} dt \right) \\
= \frac{1}{2\pi} \int_{-\pi}^{\pi} dt + \sum_{k=1}^{N} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ikt} dt + \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-ikt} dt \right) = 1$$

- 2. Que $D_N(x) = \sum_{k=-N}^{N} e^{ikx}$ soit périodique de période 2π et pair est évident
- 3. Nous allons démontrer que $D_n(x) = \frac{\sin\left(n + \frac{1}{2}\right)x}{\sin\frac{x}{2}} = \frac{\sin\left(2n + 1\right)\frac{x}{2}}{\sin\frac{x}{2}}$

On peut écrire différemment le noyau de Dirichle

$$D_n(x) = 1 + \sum_{k=1}^{n} (e^{ikx} + e^{-ikx}) = 1 + \sum_{k=1}^{n} (e^{ix})^k + \sum_{k=1}^{n} (e^{-ix})^k$$

(a) Nous allons tout d'abord calculer $\sum_{k=1}^{n} (e^{ix})^k$, pour $x \neq 2k\pi$ avec $k \in \mathbb{Z}$

En utilisant la somme des termes d'une suite géométrique, toujours pour $x \neq 2k\pi$, nous avons : $\sum_{i=1}^{n} \left(e^{ix}\right)^k = \frac{e^{ix} - e^{i(n+1)x}}{1 - e^{ix}}$

$$\sum_{k=1}^{n} (e^{ix})^k = \frac{e^{ix} - e^{i(n+1)x}}{1 - e^{ix}}$$

En multipliant numérateur et dénominateur par $e^{-i\frac{x}{2}}$, nous obtenons :

$$\frac{e^{ix} - e^{i(n+1)x}}{1 - e^{ix}} = \frac{e^{-i\frac{x}{2}} \left(e^{ix} - e^{i(n+1)x}\right)}{e^{-i\frac{x}{2}} \left(1 - e^{ix}\right)} = \frac{e^{i\frac{x}{2}} - e^{i\left(n + \frac{1}{2}\right)x}}{e^{-i\frac{x}{2}} - e^{i\frac{x}{2}}}$$

(b) La simplification de $\sum_{k=1}^{n} (e^{-ix})^k$ est la même, et nous obtenons :

$$\sum_{k=1}^{n} \left(e^{-ix} \right)^k = \frac{e^{-i\frac{x}{2}} - e^{-i\left(n + \frac{1}{2}\right)x}}{e^{i\frac{x}{2}} - e^{-i\frac{x}{2}}}$$

(c) Nous faisons maintenant la somme
$$\sum_{k=1}^{n} (e^{ix})^k + \sum_{k=1}^{n} (e^{-ix})^k$$
. Donc,

$$\sum_{k=1}^{n} (e^{ix})^k + \sum_{k=1}^{n} (e^{-ix})^k = \frac{e^{i\frac{x}{2}} - e^{i\left(n + \frac{1}{2}\right)x}}{e^{-i\frac{x}{2}} - e^{i\frac{x}{2}}} + \frac{e^{-i\frac{x}{2}} - e^{-i\left(n + \frac{1}{2}\right)x}}{e^{i\frac{x}{2}} - e^{-i\frac{x}{2}}}$$

$$= \frac{e^{i\frac{x}{2}} - e^{i\left(n + \frac{1}{2}\right)x}}{e^{-i\frac{x}{2}} - e^{i\frac{x}{2}}} - \frac{e^{-i\frac{x}{2}} - e^{-i\left(n + \frac{1}{2}\right)x}}{e^{-i\frac{x}{2}} - e^{i\frac{x}{2}}}$$

$$= \frac{\left(e^{i\frac{x}{2}} - e^{-i\frac{x}{2}}\right) + \left(e^{-ix\left(n + \frac{1}{2}\right)} - e^{ix\left(n + \frac{1}{2}\right)}\right)}{e^{-i\frac{x}{2}} - e^{i\frac{x}{2}}}$$

$$= \frac{2i\sin\frac{x}{2} - 2i\sin\left(n + \frac{1}{2}\right)x}{-2i\sin\frac{x}{2}}$$

$$= -1 + \frac{\sin\left(n + \frac{1}{2}\right)x}{\sin\frac{x}{2}}$$

D'où,
$$D_n(x) = 1 - 1 + \frac{\sin(n + \frac{1}{2})x}{\sin\frac{x}{2}} = \frac{\sin(n + \frac{1}{2})x}{\sin\frac{x}{2}} = \frac{\sin(2n + 1)\frac{x}{2}}{\sin\frac{x}{2}}$$

Remarque 15:

De l'identité
$$\frac{1}{2\pi} \int_{0}^{2\pi} D_{N}\left(t\right) dt = 1$$
, nous pouvons conclure que $\int_{0}^{2\pi} \frac{\sin\left(n + \frac{1}{2}\right)x}{\sin\frac{x}{2}} dx = 2\pi$

9.4.2 Lemme préparatoire : le noyau de Féjèr

Nous définissons donc K_n , le noyau de Féjèr, en posant pour tout $n \in \mathbb{N}$ et tout $x \in [-\pi; \pi]$:

$$K_{N}\left(x\right) = \frac{1}{N} \sum_{k=0}^{N-1} D_{k}\left(x\right)$$

Nous avons:

- 1. K_N est paire et périodique de période 2π
- 2. Nous avons $\frac{1}{2\pi} \int_{-\pi}^{\pi} K_N(t) dt = 1$
- 3. Pour tout $x \in \mathbb{R} \setminus \mathbb{Z}$, $K_N(x) = \frac{1}{N} \left(\frac{\sin\left(N\frac{x}{2}\right)}{\sin\frac{x}{2}} \right)^2$ et donc, $K_N(x) \geqslant 0$

Démonstration

- 1. Que K_N soit paire et périodique de période 2π vient de la définition même de K_N , puisque K_N est combinaison linéaire de noyaux de Dirichlet D_k pairs et périodique et de période 2π
- 2. Démontrons que $\frac{1}{2\pi}\int_{-\pi}^{\pi}K_{N}\left(t\right)\,\mathrm{d}t=1$

Pour le démontrer, il suffit de retraduire l'expression proposée :

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} K_N(t) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{1}{N} \sum_{k=0}^{N-1} D_k(t) \right) dt = \frac{1}{N} \sum_{k=0}^{N-1} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} D_k(t) dt \right)$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} 1 = 1$$

3. Démontrons que pour tout $x \in \mathbb{R} \setminus \mathbb{Z}$, $K_N(x) = \frac{1}{N} \left(\frac{\sin\left(N\frac{x}{2}\right)}{\sin\frac{x}{2}} \right)^2$

Pour le démontrer, nous allons utiliser le classique et fastidieux calcul avec les nombres complexes imaginaires.

Pour faire plus simple, nous allons calculer $NK_{N}\left(x\right)$.

Nous avons
$$NK_N(x) = \sum_{k=0}^{N-1} D_k(x) = \sum_{k=0}^{N-1} \frac{\sin(2k+1)\frac{x}{2}}{\sin\frac{x}{2}} = \frac{1}{\sin\frac{x}{2}} \sum_{k=0}^{N-1} \sin\left((2k+1)\frac{x}{2}\right)$$

Et nous avons $\sin\left((2k+1)\frac{x}{2}\right) = \frac{e^{i(2k+1)\frac{x}{2}} - e^{-i(2k+1)\frac{x}{2}}}{2i}.$

Et donc

$$NK_{N}(x)\sin\frac{x}{2} = \sum_{k=0}^{N-1} \left(\frac{e^{i(2k+1)\frac{x}{2}} - e^{-i(2k+1)\frac{x}{2}}}{2i} \right)$$

$$= \frac{1}{2i} \sum_{k=0}^{N-1} \left(e^{i(2k+1)\frac{x}{2}} - e^{-i(2k+1)\frac{x}{2}} \right)$$

$$= \frac{1}{2i} \left(\sum_{k=0}^{N-1} e^{i(2k+1)\frac{x}{2}} - \sum_{k=0}^{N-1} e^{-i(2k+1)\frac{x}{2}} \right)$$

Nous avons : $e^{i(2k+1)\frac{x}{2}} = e^{kix+\frac{ix}{2}} = e^{\frac{ix}{2}} \times e^{kix} = e^{\frac{ix}{2}} \times \left(e^{ix}\right)^k$

Et donc :

$$\sum_{k=0}^{N-1} e^{i(2k+1)\frac{x}{2}} = e^{\frac{ix}{2}} \sum_{k=0}^{N-1} \left(e^{ix} \right)^k = e^{\frac{ix}{2}} \left(\frac{1 - e^{iNx}}{1 - e^{ix}} \right)$$

De la même manière :

$$\sum_{k=0}^{N-1} e^{-i(2k+1)\frac{x}{2}} = e^{\frac{-ix}{2}} \sum_{k=0}^{N-1} \left(e^{-ix} \right)^k = e^{\frac{-ix}{2}} \left(\frac{1 - e^{-iNx}}{1 - e^{-ix}} \right)$$

Et donc

$$2iNK_{N}(x)\sin\frac{x}{2} = e^{\frac{ix}{2}}\left(\frac{1-e^{iNx}}{1-e^{ix}}\right) - e^{\frac{-ix}{2}}\left(\frac{1-e^{-iNx}}{1-e^{-ix}}\right)$$

$$= \frac{e^{\frac{ix}{2}}\left(1-e^{-ix}\right)\left(1-e^{iNx}\right) - e^{\frac{-ix}{2}}\left(1-e^{ix}\right)\left(1-e^{-iNx}\right)}{\left(1-e^{ix}\right)\left(1-e^{-ix}\right)}$$

$$= \frac{\left(e^{\frac{ix}{2}}-e^{\frac{-ix}{2}}\right)\left(1-e^{iNx}\right) - \left(e^{\frac{-ix}{2}}-e^{\frac{ix}{2}}\right)\left(1-e^{-iNx}\right)}{2\left(1-\cos x\right)}$$

$$= \frac{\left(e^{\frac{ix}{2}}-e^{\frac{-ix}{2}}\right)\left[\left(1-e^{iNx}\right) + \left(1-e^{-iNx}\right)\right]}{2\left(1-\cos x\right)}$$

$$= \frac{2i\sin\frac{x}{2}\left[2-2\cos Nx\right]}{2\left(1-\cos x\right)}$$

Et donc $2iNK_N(x)\sin\frac{x}{2} = \frac{2i\sin\frac{x}{2}\left[2-2\cos Nx\right]}{2\left(1-\cos x\right)} \iff NK_N(x) = \frac{(1-1\cos Nx)}{(1-\cos x)}$ En utilisant la formule trigonométrique $1-\cos 2u = 2\sin^2 u$, nous avons alors :

$$NK_{N}\left(x\right) = \frac{\left(2\sin^{2}\left(N\frac{x}{2}\right)\right)}{\left(2\sin^{2}\left(\frac{x}{2}\right)\right)} = \left(\frac{\sin\left(N\frac{x}{2}\right)}{\sin\left(\frac{x}{2}\right)}\right)^{2}$$

Et, nous avons donc bien $K_{N}\left(x\right) = \frac{1}{N} \left(\frac{\sin\left(N\frac{x}{2}\right)}{\sin\frac{x}{2}}\right)^{2}$

Remarque 16:

Comme tout à l'heure, des identités $\frac{1}{2\pi} \int_{-\pi}^{\pi} K_N(t) dt = 1$ et $K_N(x) = \frac{1}{N} \left(\frac{\sin\left(N\frac{x}{2}\right)}{\sin\frac{x}{2}} \right)^2$, nous pouvons déduire que :

$$\int_{-\pi}^{\pi} \left(\frac{\sin\left(N\frac{x}{2}\right)}{\sin\frac{x}{2}} \right)^2 dx = 2\pi N$$

9.4.3Théorème de Féjèr

Soit $f \in \mathcal{C}\left(T\right)$, c'est à dire f continue, périodique et de prériode 2π

On considère la somme partielle de rang N de sa série de Fourier $S_{N}\left(f\right)\left(x\right)=\sum_{k=-N}^{N}c_{k}\left(f\right)e^{ikx}$

Alors, si nous posons $\sigma_n\left(f\right)=\frac{1}{n}\sum_{k=0}^{n-1}S_k\left(f\right)$, la suite de fonctions $(\sigma_n\left(f\right))_{n\in\mathbb{N}}$ converge uniformément vers

$$f\text{, c'est à dire}: \lim_{n \to +\infty} \left(\sup_{x \in [0;2\pi]} \left| \sigma_n\left(f\right)\left(x\right) - f\left(x\right) \right| \right) = 0 \Longleftrightarrow \lim_{n \to +\infty} \left\| \sigma_n\left(f\right) - f \right\|_{\infty} = 0$$

Démonstration

Cette démonstration va se faire en plusieurs étapes, et pour la faciliter, en utilisant la périodicité de f, nous alons travailler sur $[-\pi; +\pi]$

- 1. Ecrivons différemment $S_N(f)(x)$
 - ⇒ Tout d'abord :

$$c_k(f) e^{ikx} = \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-ikt} dt\right) e^{ikx} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{ik(x-t)} dt$$

⇒ Donc, et par linéarité de l'intégrale :

$$S_{N}(f)(x) = \sum_{k=-N}^{N} c_{k}(f) e^{ikx} = \sum_{k=-N}^{N} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{ik(x-t)} dt$$
$$= \frac{1}{2\pi} - \pi^{\pi} f(t) \left(\sum_{k=-N}^{N} e^{ik(x-t)} \right) dt$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) D_{N}(x-t) dt$$

Où
$$D_N(x) = \sum_{k=-N}^{N} e^{ikx}$$
 est le noyau de Dirichlet

- 2. Nous allons, maintenant, étudier $\sigma_{n}\left(f\right)$ en utilisant le noyau de Féjèr $\rightarrow \text{ Nous avons } \sigma_{N}\left(f\right)\left(x\right) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f\left(x-t\right) K_{N}\left(t\right) \, \mathrm{d}t \text{ où } K_{N} \text{ est le noyau de Féjèr}$

Comme tout à l'heure, nous allons ré-écrire l'expression demandée :

$$\sigma_{N}(f)(x) = \frac{1}{N} \sum_{k=0}^{N-1} S_{k}(f)(x) = \frac{1}{N} \sum_{k=0}^{N-1} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) D_{k}(x-t) dt$$
$$= \int_{-\pi}^{\pi} f(t) \left(\frac{1}{N} \sum_{k=0}^{N-1} D_{k}(x-t)\right) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) K_{N}(x-t) dt$$

Nous venons de montrer que $\sigma_N(f)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) K_N(x-t) dt$.

En faisant le changement de variables $u = x - t \iff t = x - u$ et donc dt = -du, nous avons :

$$\int_{-\pi}^{\pi} f(t) K_N(x-t) dt = -\int_{\substack{x+\pi\\x+\pi}}^{x+\pi} f(x-u) K_N(u) du$$

$$= \int_{x-\pi}^{x+\pi} f(x-u) K_N(u) du$$

$$= \int_{-\pi}^{\pi} f(x-u) K_N(u) du \text{ puisque } f \text{ et } K_N \text{ sont périodiques}$$

Donc
$$\sigma_N(f)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) K_N(x-t) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-t) K_N(t) dt$$

3. Nous allons montrer la convergence uniforme de la suite $(\sigma_N(f))_{N\in\mathbb{N}}$

Soit donc $\varepsilon > 0$

- \Rightarrow f étant continue sur l'intervalle $[-\pi;\pi]$, y est uniformément continue. Il existe donc $\eta > 0$ tel que, pour tout $x \in [-\pi; \pi]$ et tout $y \in [-\pi; \pi]$, si $|x - y| < \eta$ alors $|f(x) - f(y)| \le \frac{\varepsilon}{2}$ \Rightarrow Pour tout $x \in \mathbb{R}$, nous avons :

$$|f(x) - \sigma_{N}(f)(x)| = \left| f(x) \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} K_{N}(t) dt \right) - \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x - t) K_{N}(t) dt \right|$$

$$= \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} (f(x) - f(x - t)) K_{N}(t) dt \right|$$

$$\leqslant \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x) - f(x - t)| K_{N}(t) dt$$

$$\leqslant \frac{1}{2\pi} \int_{\{|t| < \eta\}}^{\pi} |f(x) - f(x - t)| K_{N}(t) dt +$$

$$\frac{1}{2\pi} \int_{\{\eta \leqslant |t| < \pi\}}^{\pi} |f(x) - f(x - t)| K_{N}(t) dt$$

 $\text{ Regardons, maintenant } \frac{1}{2\pi} \int_{\{|t| < \eta\}} |f\left(x\right) - f\left(x - t\right)| \, K_N\left(t\right) \, \mathrm{d}t$ Dans l'ensemble $\{|t| < \eta\}$, pour tout $x \in \mathbb{R}$, nous avons $\{|x - (x - t)| = |t| < \eta\}$ et donc $|f\left(x\right) - f\left(x - t\right)| \leqslant \frac{\varepsilon}{2}$ Ainsi:

$$\frac{1}{2\pi} \int_{\{|t| < \eta\}} |f(x) - f(x - t)| K_N(t) dt \leqslant \frac{\varepsilon}{2} \times \frac{1}{2\pi} \int_{\{|t| < \eta\}} K_N(t) dt
\leqslant \frac{\varepsilon}{2} \times \frac{1}{2\pi} \int_{-\pi}^{+\pi} K_N(t) dt = \frac{\varepsilon}{2}$$

puisque
$$\frac{1}{2\pi} \int_{-\pi}^{+\pi} K_N(t) dt = 1$$

 $> \text{ Maintenant, posons nos regards sur } \frac{1}{2\pi} \int_{\{\eta \leqslant |t| < \pi\}} |f\left(x\right) - f\left(x - t\right)| \, K_N\left(t\right) \, \mathrm{d}t$ $\star \text{ Posons } M = \sup_{x \in [-\pi; +\pi]} |f\left(x\right)|^1, \text{ nous avons } |f\left(x\right) - f\left(x - t\right)| \leqslant 2M, \text{ et donc : }$

* Posons
$$M = \sup_{x \in [-\pi; +\pi]} |f(x)|^1$$
, nous avons $|f(x) - f(x-t)| \le 2M$, et donc :

$$\frac{1}{2\pi} \int_{\{\eta \leqslant |t| < \pi\}} |f(x) - f(x - t)| K_N(t) dt \leqslant \frac{M}{\pi} \int_{\{\eta \leqslant |t| < \pi\}} K_N(t) dt$$

* Nous avons démontré que
$$K_N(t) = \frac{1}{N} \left(\frac{\sin\left(N\frac{t}{2}\right)}{\sin\frac{t}{2}} \right)^2$$
.

^{1.} On écrit souvent, aussi, $M = ||f||_{\infty}$

Comme $\eta \leqslant |t| < \pi$, alors $\frac{\eta}{2} \leqslant \left| \frac{t}{2} \right| < \frac{\pi}{2}$, c'est à dire $\frac{-\pi}{2} < t \leqslant \frac{-\eta}{2}$ ou $\frac{\eta}{2} \leqslant \frac{t}{2} < \frac{\pi}{2}$, c'est à dire, à chaque fois :

$$\left|\sin\frac{t}{2}\right|\geqslant\sin\frac{\eta}{2}\Longleftrightarrow\sin^2\frac{t}{2}\geqslant\sin^2\frac{\eta}{2}\Longleftrightarrow\frac{1}{\sin^2\frac{t}{2}}\leqslant\frac{1}{\sin^2\frac{\eta}{2}}$$

Et donc
$$K_N(t) = \frac{1}{N} \left(\frac{\sin\left(N\frac{t}{2}\right)}{\sin\frac{t}{2}} \right)^2 \leqslant \frac{1}{N\sin^2\frac{\eta}{2}}$$

* Nous avons donc :

avoils done:
$$\frac{1}{2\pi} \int_{\{\eta \leqslant |t| < \pi\}} |f(x) - f(x - t)| K_N(t) dt \leqslant \frac{M}{\pi} \times \frac{1}{N \sin^2 \frac{\eta}{2}} \int_{\{\eta \leqslant |t| < \pi\}} dt$$

$$\leqslant \frac{M}{N\pi \sin^2 \frac{\eta}{2}} \int_{-\pi}^{\pi} dt = \frac{2M}{N \sin^2 \frac{\eta}{2}}$$

 \Rightarrow En synthèse, nous avons $|f(x) - \sigma_N(f)(x)| \le \frac{\varepsilon}{2} + \frac{2M}{N\sin^2\frac{\eta}{2}}$, et cette inégalité ne dépend pas

de
$$x \in \mathbb{R}$$

Comme $\lim_{N \to +\infty} \frac{2M}{N \sin^2 \frac{\eta}{2}} = 0$, il existe $N_{\varepsilon} \in \mathbb{N}$ tel que si $N \geqslant N_{\varepsilon}$, alors $0 \leqslant \frac{2M}{N \sin^2 \frac{\eta}{2}} \leqslant \frac{\varepsilon}{2}$.
Et donc, pour ce même $N_{\varepsilon} \in \mathbb{N}$, si $N \geqslant N_{\varepsilon}$, alors $|f(x) - \sigma_N(f)(x)| \leqslant \varepsilon$

La convergence de la suite $(\sigma_{N}(f))_{N\in\mathbb{N}}$ vers f est donc uniforme

Remarque 17:

- 1. Pour tout $N \in \mathbb{N}$, $S_N(f)$ est un polynôme trigonométrique $(S_N(f) \in \mathcal{T}[x])$, et donc comme $\mathcal{T}[x]$ est un \mathbb{C} -espace vectoriel, $\sigma_n(f)$ est aussi un polynôme trigonométrique de $\mathcal{T}[x]$, comme combinaison linéaire de polynômes trigonométriques.
 - On dit donc que toute fonction $f \in \mathcal{C}(T)$ (fonction continue 2π -périodique) est limite uniforme d'une suite de polynômes trigonométriques.
- 2. Ce qui veut dire que, pour tout $\varepsilon > 0$ et pour toute fonction $f \in \mathcal{C}(T)$, il existe un polynôme trigonométique $P \in \mathcal{T}[x]$ tel que $\|f P\|_{\infty} < \varepsilon$
- 3. Le théorème de Féjèr est parfois appelé version « trigonométrique » du théorème d'approximation de Weierstrass
- 4. Il faut remarquer <u>l'importance de la continuité</u> de f dans le compact $[-\pi; +\pi]$ puisque nous avons utilisé le théorème de Heine.
- 5. Qu'en est-il des fonctions continues par morceaux, c'est à dire $f \in \mathcal{C}_M(T)$? En fait, la réponse est simple : les polynômes trigonométriques étant continus (et même indéfiniment continuement dérivables) on ne peut bien sûr avoir convergence uniforme vers f que là où f est continue et donc, il existe des fonctions $f \in \mathcal{C}_M(T)$ qui ne peuvent être limites uniformes de polynômes trigonométriques.
- 6. Tout se passe donc au sens des moindres carrés

9.4.4 Théorème

Soit $g \in \mathcal{C}_M\left(T\right)$. Alors, il existe une suite $(f_n)_{n \in \mathbb{N}}$ de fonctions de $\mathcal{C}\left(T\right)$ (C'est à dire telles que, pour tout $n \in \mathbb{N}$ $f_n \in \mathcal{C}\left(T\right)$) telles que $\lim_{n \to +\infty} \left\|f_n - g\right\|_2 = 0$

Démonstration

 \rightarrow Soit $g \in \mathcal{C}_M(T)$. Il existe alors a_1, a_2, \ldots, a_N N points de discontinuité de g sur l'intervalle $[0; 2\pi]$ \to On construit alors, pour $n\in\mathbb{N}^*$ la suite $(f_n)_{n\in\mathbb{N}^*}$ définie pour chaque $n\in\mathbb{N}^*,$ par : $f_{n}:[0;2\pi]\longrightarrow\mathbb{C}$ et telle que, pour tout $x\in[0;2\pi]\setminus\left(\bigcup_{k=2}^{N}\left[a_{k}-\frac{1}{n};a_{k}+\frac{1}{n}\right]\right),$ $f_{n}\left(x\right)=g\left(x\right),$ et f_{n} est affine sur chaque intervalle $\left[a_k - \frac{1}{n}; a_k + \frac{1}{n}\right]$, c'est à dire que si $x \in \left[a_k - \frac{1}{n}; a_k + \frac{1}{n}\right]$, alors

$$f_n\left(x\right) = g\left(a_k - \frac{1}{n}\right) + \frac{n}{2}\left(g\left(a_k + \frac{1}{n}\right) - g\left(a_k - \frac{1}{n}\right)\right)\left(x - \left(a_k - \frac{1}{n}\right)\right)$$

 f_n est continue sur $[0; 2\pi]$, par construction

 \rightarrow Nous avons $\left\|f_{n}-g\right\|_{2}^{2}=\frac{1}{2\pi}\int_{0}^{2\pi}\left|f_{n}\left(t\right)-g\left(t\right)\right|^{2}\mathrm{d}t$, et par construction des f_{n} , nous avons :

$$||f_n - g||_2^2 = \frac{1}{2\pi} \left(\sum_{k=1}^N \int_{a_k - \frac{1}{n}}^{a_k + \frac{1}{n}} |f_n(t) - g(t)|^2 dt \right)$$

 \rightarrow Regardons ce qui se passe au point de discontinuité a_k , ou plutôt, sur l'intervalle $\left|a_k - \frac{1}{n}; a_k - \frac{1}{n}\right|$:

$$\left| f_n\left(t\right) - g\left(t\right) \right| = \left| g\left(a_k - \frac{1}{n}\right) + \frac{n}{2}\left(g\left(a_k + \frac{1}{n}\right) - g\left(a_k - \frac{1}{n}\right)\right)\left(t - \left(a_k - \frac{1}{n}\right)\right) - g\left(t\right) \right| \\ \leqslant \left| g\left(a_k - \frac{1}{n}\right) - g\left(t\right) \right| + \frac{n}{2}\left| g\left(a_k + \frac{1}{n}\right) - g\left(a_k - \frac{1}{n}\right) \right| \times \left| t - \left(a_k - \frac{1}{n}\right) \right|$$

Appelons $M = \sup_{x \in [0;2\pi]} |g(x)|$, alors :

- $\star \left| g\left(a_k \frac{1}{n}\right) g\left(t\right) \right| \leqslant 2M$, tout comme $\left| g\left(a_k + \frac{1}{n}\right) g\left(a_k \frac{1}{n}\right) \right| \leqslant 2M$
- * Nous avons aussi, en considérant la longueur de l'intervalle $\left|a_k \frac{1}{n}; a_k + \frac{1}{n}\right|$

$$\left| t - \left(a_k - \frac{1}{n} \right) \right| \leqslant \left| a_k + \frac{1}{n} - \left(a_k - \frac{1}{n} \right) \right| = \frac{2}{n}$$

Ce qui fait que :

$$\frac{n}{2}\left|g\left(a_k+\frac{1}{n}\right)-g\left(a_k-\frac{1}{n}\right)\right|\times\left|t-\left(a_k-\frac{1}{n}\right)\right|\leqslant\frac{n}{2}\times 2M\times\frac{2}{n}=2M$$

Et donc, en synthèse :

$$|f_n(t) - g(t)| \le 4M \Longleftrightarrow |f_n(t) - g(t)|^2 \le 16M^2$$

D'où:

$$\int_{a_{k}-\frac{1}{n}}^{a_{k}+\frac{1}{n}} \left| f_{n}\left(t\right) - g\left(t\right) \right|^{2} dt \leqslant \int_{a_{k}-\frac{1}{n}}^{a_{k}+\frac{1}{n}} 16M^{2} dt = 16M^{2} \times \frac{2}{n}$$

Et donc,
$$||f_n - g||_2^2 \le \frac{1}{2\pi} \left(\sum_{k=1}^N 16M^2 \times \frac{2}{n} \right) = \frac{16M^2N}{n\pi}$$

Comme $\lim_{n\to+\infty}\frac{16M^2N}{n\pi}=0$, nous avons aussi $\lim_{n\to+\infty}\|f_n-g\|_2^2=0$. Ce que nous voulions : nous avons trouvé une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions de $\mathcal{C}(T)$ telles que $\lim_{n\to+\infty}\|f_n-g\|_2=0$. 0

Remarque 18:

Il est donc possible de dire que, pour toute fonction $g \in \mathcal{C}_M(T)$ et pour tout $\varepsilon > 0$, il existe une fonction continue $f \in \mathcal{C}(T)$ telle que $||f - g||_2 \leqslant \varepsilon$: il suffira de choisir une fonction f_n telle que $\frac{16M^2N}{n\pi} < \varepsilon^2$

9.4.5 Corollaire

Pour toute fonction $g \in \mathcal{C}_M(T)$ et pour tout $\varepsilon > 0$ il existe un polynôme trigonométrique $P \in T[x]$ tel que $\|P - g\|_2 \leqslant \varepsilon$

Démonstration

Soit $g \in \mathcal{C}_M(T)$ et $\varepsilon > 0$

Il existe $f \in \mathcal{C}(T)$ tel que $||f - g||_2 \leqslant \frac{\varepsilon}{2}$

Il existe un polynôme trigonométique $\overset{\mathtt{L}}{P} \in \mathcal{T}\left[x\right]$ tel que $\|f-P\|_{\infty} < \frac{\varepsilon}{2}$.

D'après 9.3.3, nous avons $\|f-P\|_2 \leqslant \|f-P\|_\infty < \frac{\varepsilon}{2}.$

Donc:

$$\|P-g\|_2 \leqslant \|P-f\|_2 + \|f-g\|_2 \leqslant \|f-P\|_\infty + \|f-g\|_2 \leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Ce que nous voulions