12.4 Diagonalisation

Introduction

Dans ce qui suit, nous allons considérer un \mathbb{K} -espace vectoriel E de dimension n (en fait, $E = \mathbb{K}^n$) et un endomorphisme $u \in \mathcal{L}(E)$.

Du fait de l'isomorphisme entre $\mathcal{L}(E)$ et $\mathcal{M}_n(\mathbb{K})$, nous parlerons indifféremment du polynôme caractéristique P_u de $u \in \mathcal{L}(E)$ et du polynôme caractéristique P_A où $A \in \mathcal{M}_n(\mathbb{K})$ est la matrice de u. Nous avons $P_u = P_A$.

Ainsi, parler de valeur propre de $u \in \mathcal{L}(E)$ ou de $A \in \mathcal{M}_n(\mathbb{K})$ est identique

12.4.1 Définition

Soit E un \mathbb{K} -espace vectoriel de dimension n et $u \in \mathcal{L}(E)$

- 1. On dit que $u \in \mathcal{L}(E)$ est diagonalisable s'il existe une base \mathcal{B} telle que la matrice associée à u dans la base \mathcal{B} soit diagonale.
- 2. Une matrice $A \in \mathcal{M}_n\left(\mathbb{K}\right)$ est diagonalisable, s'il existe une matrice $P \in \mathcal{M}_n\left(\mathbb{K}\right)$ inversible, telle $P^{-1}AP$ soit une matrice diagonale

Remarque 11:

- 1. En fait, $P \in \mathcal{M}_n(\mathbb{K})$ inversible veut dire $P \in GL_n(\mathbb{K})$
- 2. On revient aux remarques de l'introduction : la matrice diagonale D est la matrice de $u \in \mathcal{L}(E)$ dans la base \mathcal{B} . P et P^{-1} étant les matrices de passage d'une base à l'autre.

12.4.2 Théorème

Soit E un \mathbb{K} -espace vectoriel de dimension n et $u \in \mathcal{L}(E)$.

 $u \in \mathcal{L}(E)$ est diagonalisable si et seulement si il est possible de trouver une base de E formée de vecteurs propres.

Démonstration

1. On suppose que $u \in \mathcal{L}(E)$ est diagonalisable

Alors, il existe une base \mathcal{B} de E telle que la matrice associée à u dans la base \mathcal{B} soit diagonale. Soit $A \in \mathcal{M}_n(\mathbb{K})$ cette matrice

Nous avons
$$A=\begin{pmatrix} \lambda_1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \ddots & \cdots & \lambda_{n-1} & 0 \\ 0 & 0 & \cdots & \cdots & \lambda_n \end{pmatrix}$$
 où $\lambda_i \in \mathbb{K}$; donc le polynôme caractéristique de u

est

$$P_{u}(X) = \det(A - X \operatorname{Id}_{n}) = \begin{vmatrix} \lambda_{1} - X & 0 & \cdots & 0 & 0 \\ 0 & \lambda_{2} - X & 0 & \cdots & 0 \\ \vdots & \cdots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \lambda_{n-1} - X & 0 \\ 0 & 0 & \cdots & \cdots & \lambda_{n} - X \end{vmatrix} = \prod_{i=1}^{n} (\lambda_{i} - X)$$

La famille des λ_i pour $i=1,\ldots,n$ est donc une famille de valeurs propres de u et pour chaque $i=1,\ldots,n,\ u\left(a_i\right)=\lambda_i a_i$ et les a_i sont des vecteurs propres non nuls de valeur propre associée λ_i ; la famille de ces a_i forme une base $\mathcal{B}=\{a_1,a_2,\cdots,a_n\}$ de E

2. Réciproquement, si $\mathcal{B} = \{a_1, a_2, \dots, a_n\}$ est une base faite des vecteurs propres de u tels que, pour chaque $i = 1, \dots, n$, $u(a_i) = \lambda_i a_i$, alors, la matrice de u dans la base $\mathcal{B} = \{a_1, a_2, \dots, a_n\}$ est une matrice diagonale

Remarque 12:

Ainsi, si un endomorphisme $u \in \mathcal{L}(E)$ est diagonalisable, ses n valeurs propres, distinctes ou confondues sont toutes dans \mathbb{K} , et le polynôme caractéristique P_u a toutes ses racines dans \mathbb{K}

12.4.3 Théorème

Soit E un \mathbb{K} -espace vectoriel de dimension n et $u \in \mathcal{L}(E)$

 $u \in \mathcal{L}(E)$ est diagonalisable si et seulement si les 2 propositions suivantes sont vérifiées

- 1. Le polynôme P_u a toutes ses racines dans $\mathbb K$
- 2. Si $\lambda_i \in \mathbb{K}$ est racine de P_u d'ordre k_i alors, $\dim E_{\lambda_i} = k_i$

Démonstration

1. On suppose que $u \in \mathcal{L}(E)$ est diagonalisable Soit A la matrice de u.

Alors, A est semblable à une matrice diagonale de la forme $D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \cdots & \lambda_{n-1} & 0 \\ 0 & 0 & \cdots & \cdots & \lambda_n \end{pmatrix}$ où

 $\lambda_{i} \in \mathbb{K}$ et le polynôme caractéristique $P_{u}\left(X\right) = \prod_{i=1}^{n}\left(\lambda_{i} - X\right)$; donc P_{u} a toutes ses racines dans \mathbb{K}

Soit k_i l'ordre de λ_i ; alors alors, $P_u(X) = \prod_{i=1}^h (\lambda_i - X)^{k_i}$ où $k_1 + \dots + k_h = n$ et A est, en fait, semblable à une matrice du type :

$$D = \begin{pmatrix} \lambda_1 & & & & & \\ & \lambda_1 & & & & \\ & & \lambda_1 & & & \\ & & & \lambda_2 & & 0 \\ & & & & \lambda_2 & & \\ & & & & & \lambda_2 & & \\ & & & & & \ddots & \\ & & & & & & \lambda_h \end{pmatrix}$$

C'est à dire qu'il existe une base de vecteurs propres dans lequel u admet D pour matrice.

Nous avons donc, dim $E_{\lambda_i} = k_i$

Alors $E = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_h}$ et donc dim $E = \dim E_{\lambda_1} + \cdots + \dim E_{\lambda_h}$

2. Etude de la réciproque

Supposons que P_u a toutes ses racines dans \mathbb{K} et que si λ_i est une racine de P_u d'ordre k_i alors, dim $E_{\lambda_i} = k_i$

Alors, $k_1 + \cdots + k_h = n$ impose que dim $(E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_h}) = n = \dim E$

Donc, $E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_h} = E$; la réunion des bases de chacun des E_{λ_i} forme une base de E, formée de vecteurs propres, d'où u est diagonalisable.

12.4.4 Corollaire

Une matrice $A \in \mathcal{M}_n\left(\mathbb{K}\right)$ est semblable à une matrice diagonale si et seulement si

- 1. P_A le polynôme caractéristique de A a toutes ses racines dans $\mathbb K$
- 2. Si λ_i est une racine de P_A d'ordre k_i alors, $\dim E_{\lambda_i} = k_i$

Démonstration

Pour démontrer ce corollaire, il suffit d'utiliser le théorème 12.4.3 et l'isomorphisme entre $\mathcal{L}(E)$ et $\mathcal{M}_n(\mathbb{K})$

Remarque 13:

Mettons nous dans la situation où $\mathbb{K} = \mathbb{R}$. Si les valeurs propres ne sont pas toutes réelles, on ne peut pas espérer pouvoir diagonaliser dans \mathbb{R} ; en effet D fait apparaître les valeurs propres sur sa diagonale et ne saurait alors être réelle.

La première condition est donc in dispensable si on veut obtenir une diagonalisation dans \mathbb{K} ; par contre, si $\mathbb{K}=\mathbb{C}$, elle n'a pas d'objet si on diagonalise dans \mathbb{C} . Dans la plupart des cas cette condition sera réalisée

12.4.5 Une condition suffisante de diagonalisation

- 1. Soit E un \mathbb{K} -espace vectoriel de dimension n et $u \in \mathcal{L}(E)$ Si u possède n valeurs propres 2 à 2 distinctes dans \mathbb{K} , alors, u est diagonalisable
- 2. Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice possèdant n valeurs propres 2 à 2 distinctes dans \mathbb{K} , alors, A est diagonalisable.

Démonstration

Supposons que toutes les racines de $P_u = P_A$ soient toutes des éléments de \mathbb{K} $\lambda_1, \ldots, \lambda_n$ et qu'elles soient 2 à 2 distinctes, c'est à dire que si $i \neq j$, alors $\lambda_i \neq \lambda_j$

Il existe donc une famille de vecteurs $\{x_1, x_2, \dots, x_n\}$ tous non nuls tels que, pour tout $i, u(x_i) = \lambda x_i$. La famille $\{x_1, x_2, \dots, x_n\}$ est une famille de vecteurs propres donc forme une famille libre et est donc une base de E

u est diagonalisable; donc A est diagonalisable.

12.4.6 Corollaire

- 1. Soit E un \mathbb{K} -espace vectoriel de dimension n et $u \in \mathcal{L}(E)$. Pour que u soit diagonalisable, <u>il suffit</u> que les racines de P_u soient simples
- 2. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Pour que A soit diagonalisable, <u>il suffit</u> que les racines de P_A soient simples.

Démonstration

En effet, si \mathbb{K} est algébriquement clos, toutes les racines de $P_u = P_A$ sont dans \mathbb{K} . Elles sont distinctes 2 à 2 si et seulement si les racines sont simples. D'où ce corollaire.

Remarque 14:

- 1. Le cas du corps algébriquement clos, c'est surtout celui où $\mathbb{K} = \mathbb{C}$.
- 2. Lorsque \mathbb{K} est algébriquement clos, l'application linéaire u (ou la matrice A) peut très bien être diagonalisable, même si $P_u = P_A$ a des racines multiples. Il suffit de penser à l'identité Id_n dont le polynôme caractéristique est $P_{\mathrm{Id}_n}(X) = (1-X)^n$

3. ATTENTION, même sur C il existe des matrices qui ne sont pas diagonalisables.

Par exemple $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ est une matrice triangulaire supérieure. Elle admet donc une seule valeur

propre $\lambda=0.$ C'est une racine double, puisque $P_{A}\left(X\right)=X^{2},$ mais sa multiplicité géométrique (La dimension de l'espace propre associé à $\lambda=0,$ c'est à dire le noyau) est visiblement 1.

Donc \mathbb{C}^2 ne peut pas être somme directe des espaces propres, et A n'est pas diagonalisable

Exemple 5:

Soit $A = \left(\begin{array}{ccc} 2 & 0 & 4 \\ 3 & -4 & 12 \\ 1 & -2 & 5 \end{array} \right)$. Déterminer vecteurs propres et valeurs propres de cette matrice

 $\blacksquare \Rightarrow$ Recherchons les valeurs propres

Tout d'abord,
$$P_A(X) = \begin{vmatrix} 2 - \hat{X} & 0 & 4 \\ 3 & -4 - X & 12 \\ 1 & -2 & 5 - X \end{vmatrix}$$

Tout calculs faits, $P_A(X) = -X(X-1)(X-1)$

Les 3 valeurs propres sont 0, 1 et 2; elles sont simples; la matrice A est donc diagonalisable.

 \blacksquare \Rightarrow Cherchons le vecteur propre associé à la valeur propre $\lambda = 0$

En fait, nous devons, ici, chercher le noyau, c'est à dire les vecteurs $\begin{pmatrix} x \\ y \end{pmatrix}$ tels que

$$\begin{pmatrix} 2 & 0 & 4 \\ 3 & -4 & 12 \\ 1 & -2 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Nous obtenons donc le système

$$\begin{cases}
2x + 4z &= 0 \\
3x - 4y + 12z &= 0 \\
x - 2y + 5z &= 0
\end{cases} \iff \begin{cases}
x + 2z &= 0 \\
-4y + 6z &= 0 \\
-2y + 3z &= 0
\end{cases} \iff \begin{cases}
x + 2z &= 0 \\
-2y + 3z &= 0
\end{cases}$$

D'où les solutions sont du type $\overrightarrow{K} = \begin{pmatrix} -4\mu \\ 3\mu \\ 2\mu \end{pmatrix} = \mu \begin{pmatrix} -4 \\ 3 \\ 2 \end{pmatrix}$ où $\mu \in \mathbb{R}$ On remarque, tout de suite que dim $E_0 = \dim \ker u = 1$

 $\blacksquare \Rightarrow$ Cherchons le vecteur propre associé à la valeur propre $\lambda=1$

Soit $\overrightarrow{U}=\left(\begin{array}{c} x \\ y \end{array} \right)$ le vecteur propre associé à la valeur propre $\lambda=1$

Nous devons donc résoudre le système :

ons donc resoudre le système :
$$\begin{cases}
2x + 4z = x \\
3x - 4y + 12z = y \\
x - 2y + 5z = z
\end{cases}
\iff
\begin{cases}
x + 4z = 0 \\
3x - 5y + 12z = 0 \\
x - 2y + 4z = 0
\end{cases}
\iff
\begin{cases}
x + 4z = 0 \\
-5y = 0 \\
-2y = 0
\end{cases}$$

D'où les solutions sont du type $\overrightarrow{K}=\begin{pmatrix} -4\mu\\0\\\mu \end{pmatrix}=\mu\begin{pmatrix} -4\\0\\1 \end{pmatrix}$ où $\mu\in\mathbb{R}$

On remarque, tout de suite que dim $E_1 = 1$

 \blacksquare \Rightarrow Cherchons le vecteur propre associé à la valeur propre $\lambda = 2$

Soit $\overrightarrow{U}=\left(egin{array}{c} y \\ z \end{array} \right)$ le vecteur propre associé à la valeur propre $\lambda=2$

Nous devons donc résoudre le système :

$$\left\{ \begin{array}{cccc} 2x + 4z = & 2x \\ 3x - 4y + 12z = & 2y \\ x - 2y + 5z = & 2z \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{cccc} 4z = & 0 \\ 3x - 6y + 12z = & 0 \\ x - 2y + 3z = & 0 \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{cccc} z = & 0 \\ 3x - 6y = & 0 \\ x - 2y = & 0 \end{array} \right.$$

D'où les solutions sont du type
$$\overrightarrow{K} = \begin{pmatrix} \mu \\ 2\mu \\ 0 \end{pmatrix} = \mu \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$$
 où $\mu \in \mathbb{R}$ On remarque, tout de suite que dim $E_2 = 1$

Exercice 6:

Mêmes questions : déterminer vecteurs propres et valeurs propres des matrices suivantes :

1.
$$Y = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$$
 2. $Z = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$ 3. $T = \begin{pmatrix} -4 & 0 & 2 \\ 0 & 1 & 0 \\ 5 & 1 & -3 \end{pmatrix}$

12.4.7 Proposition

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice diagonalisable. On suppose que les valeurs propres de A sont $\lambda_1, \lambda_2, \dots, \lambda_n$, éventuellement distinctes. Alors, pour tout $k \in \mathbb{N}$, les valeurs propres de A^k sont $\lambda_1^k, \lambda_2^k, \ldots, \lambda_n^k$ De plus, si $P \in \mathrm{GL}_n(\mathbb{K})$ est une matrice qui diagonalise A, alors

$$A^{k} = P \begin{pmatrix} \lambda_{1}^{k} & 0 & \cdots & 0 \\ 0 & \lambda_{2}^{k} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & \lambda_{n}^{k} \end{pmatrix} P^{-1}$$

Démonstration

La démonstration pose peu de difficultés.

 $P \in \mathrm{GL}_n(\mathbb{K})$ est une matrice qui diagonalise A, alors, ceci veut dire que $P^{-1}AP$ est diagonale, ou encore

$$A = P \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & \lambda_n \end{pmatrix} P^{-1} = PDP^{-1}$$

Par conséquent,

$$A^{k} = (PDP^{-1})(PDP^{-1}) \cdots (PDP^{-1}) = PD(P^{-1}P)D(P^{-1}P) \cdots (P^{-1}P)DP^{-1} = PD^{k}P^{-1}$$

Or, il est évident
2
 que $D^k = \begin{pmatrix} \lambda_1^k & 0 & \cdots & 0 \\ 0 & \lambda_2^k & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & \lambda_n^k \end{pmatrix}$ D'où le résultat.

D'où le résultat.

Exercice 7:

Soit
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
.

- 1. Rechercher les valeurs propres et les vecteurs propres de A et en déduire A^n pour $n \in \mathbb{N}$
- 2. Ecrivez $A = 2\mathrm{Id}_2 + M$ où $M \in \mathcal{M}_2(\mathbb{R})$ est à préciser. Pour $n \in \mathbb{N}$, calculer M^n et retrouver A^n
- 3. La matrice A est une matrice symétrique de $\mathcal{M}_{2}(\mathbb{R})$. Soit $X \in \mathcal{M}_{2}(\mathbb{R})$ une matrice symétrique, c'est à dire telle que

$$X = \begin{pmatrix} a & c \\ c & b \end{pmatrix}$$
 avec $a \in \mathbb{R}$ et $b \in \mathbb{R}$

La matrice X est-elle diagonalisable?

2. Résultat qui peut, par exemple, être montré par récurrence

Exercice 8:

On considère un \mathbb{R} -espace vectoriel E de dimension 2, rapporté à une base $\left\{\vec{i},\vec{j}\right\}$; f est l'endomorphisme de E, défini par sa matrice $A=\begin{pmatrix}5&-1\\-1&5\end{pmatrix}$

- 1. Rechercher les vecteurs propres et les valeurs propres de ${\cal A}$
- 2. Pour tout $n \in \mathbb{Z}$, calculer A^n
- 3. On considère 2 suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par $u_0=3,\ v_0=-3$ et $\begin{cases} u_{n+1}=5u_n-v_n\\ v_{n+1}=-u_n+5v_n \end{cases}$ Donner u_n et v_n en fonction de n